Základy obecné algebry

Wielkość: px
Rozpocząć pokaz od strony:

Download "Základy obecné algebry"

Transkrypt

1 . Základy obecné algebry Ústav matematiky, Fakulta strojního inženýrství VUT v Brně, 2013

2 Obsah 1 Algebraické struktury Operace a zákony Některé důležité typy algeber Základní pojmy teorie grup Základní algebraické metody Podalgebry Relace ekvivalence a rozklad na třídy ekvivalence Izomorfizmy a homomorfizmy Relace kongruence a faktorové algebry Relace kongruence na grupách a okruzích Přímé součiny algeber Svazy a Booleovy algebry (Částečně) uspořádané množiny (Částečná)uspořádání a svazy Booleovy algebry Stoneova věta o reprezentaci Polynomy Konstrukce okruhů polynomů Polynomy a funkce Interpolace pomocí polynomů Obory integrity a dělitelnost Jednoduchá pravidla dělitelnosti Gaussovy okruhy Eukleidovy okruhy Teorie polí Minimální pole Rozšíření pole Konečná pole (Galoisova pole) Cvičení 53 Seznam literatury 61 2

3 Kapitola 1 Algebraické struktury 1.1 Operace a zákony Definice 1.1. Bud A množina, n N 0. Potom zobrazení ω : A n A se nazývá n-ární operace na A. Tedy pro n N: { A ω : n A (x 1,...,x n ) ωx 1...x n, pro n = 0: ω : { A 0 = { } A ω =: ω. Nejdůležitější případ: n = 2. 2-ární neboli binární operace je zobrazení ω : { A 2 A (x,y) ωxy =: xωy. Většinou označujeme binární operace nějakým grafickým symbolem, např., namísto symbolu ω, tedy : { A 2 A (x,y) x y. Užijeme-li k označení binární operace symbolu, mluvíme o multiplikativním značení (a píšeme xy místo x y). Užijeme-li symbolu +, mluvíme o aditivním značení. Příklad(y) ) + a jsou binární operace na N, N 0, Z, Q, Q +, R, R + a C, je binární operace na Z, Q, R a C, je binární operace na Q +, R +, Q\{0}, R\{0}, C\{0}. 2) Operace+a (vběžnémsmyslu)jsoubinárníoperacenamnožiněm n (C)všechčtvercových matic řádu n nad C (podobně pro Z, Q, R místo C). 3) Necht M,N jsou množiny a N M := {f f : M N}. Pro M = N je binární operace na M M definována takto: (f g)(x) := f(g(x)) pro všechna x M (jde o známou operaci skládání funkcí). Obdržíme tedy: { (M : M ) 2 M M (f,g) f g. 4) Bud M množina a P(M) := {T T M} množina všech podmnožin množiny M. Operace, jsou binární operace na P(M). Další důležitý příklad: n = 1. 1-ární neboli unární operace na množině A je zobrazení { A A ω : x ωx. 3

4 { C C Příklad(y) ) : x x je unární operace na C. 2) je unární operace na Z, Q, R,M n (C). 3) x 1/x je unární operace na Q\{0}, Q +, R\{0}, R +, C\{0}. 4) T M \T =: T je unární operace na množině všech podmnožin P(M) množiny M. Definice 1.4. Bud A množina, n N 0, D A n. Potom zobrazení ω : D A se nazývá n-ární parciální operace na A. Příklad(y) ) je binární parciální operace na N. 2) x 1/x je unární parciální operace na Q, R, C (D = Q\{0},...). Bud A = {a 1,...,a n } konečná množina a binární operace na A. Pak lze zadat pomocí tzv. Cayleyovy tabulky. Tabulka má v průsečíku i-tého řádku s j-tým sloupcem prvek a i a j. Definice 1.6. Bud A množina, I množina (indexů). Pro i I bud ω i n i -ární operace na A, n i N 0. Potom A := (A,(ω i ) i I ) označuje (univerzální) algebru s nosnou množinou A a souborem operací (ω i ) i I =: Ω. Často bývá I konečná, např. I = {1,...,n}. V takovémto případě píšeme Soubor (n i ) i I se nazývá typ algebry (A,Ω). (A,Ω) = (A,(ω i ) i {1,...,n} ) =: (A,ω 1,...,ω n ). Příklad(y)1.7. (Z,+,,0)jealgebratypu(2,1,0),(Z,+,,0,,1)jealgebratypu(2,1,0,2,0). Definice 1.8. Bud A množina, binární operace na A. Prvek e A se nazývá a) levý neutrální prvek vzhledem k : x A : e x = x, b) pravý neutrální prvek vzhledem k : x A : x e = x, c) neutrální prvek vzhledem k : x A : e x = x e = x. Poznámka 1.9. Rovnice, které mají tvar t 1 (x,y,z,...) = t 2 (x,y,z,...) s vhodnými termy t 1,t 2 a musejí být splněny pro všechny prvky nosné množiny uvažované algebry (např. x A : e x = x ), se nazývají zákony. Příklad(y) ) A = C, = +, 0 je neutrální prvek; A = C, =, 1 je neutrální prvek. 2) A = M n (C), = +, je neutrální prvek; A = M n (C), =, prvek je neutrální 3) A = M M, = složení, id M (identické zobrazení) je neutrální prvek. 4) A = P(M), =, M je neutrální prvek; A = P(M), =, je neutrální prvek. 4

5 Věta Bud binární operace na A, e 1 levý neutrální prvek a e 2 pravý neutrální prvek. Potom platí: e 1 = e 2, a e 1 (= e 2 ) je neutrální prvek. Důsledek Existuje nejvýše jeden neutrální prvek. Neutrální prvek se v případě multiplikativního značení obvykle nazývá jednotkovým prvkem a značí symbolem 1. V případě aditivního značení se neutrální prvek obvykle nazývá nulovým prvkem a značí symbolem 0. Definice Bud A množina, binární operace, e neutrální prvek, x A. Potom nazýváme prvek y A a) levým inverzním prvkem k x : y x = e, b) pravým inverzním prvkem k x : x y = e, c) inverzním prvkem k x : x y = y x = e. Příklad(y) Množina Operace Prvek Inverzní prvek C + x x C x 0 1/x M n (C) + (a ij ) ( a ij ) M n (C) (a ij ) s det(a ij ) 0 (a ij ) 1 M M bijektivní f f 1 P(M) M M P(M) Z ±1 ±1 Definice Prvek x se nazývá invertibilní : existuje inverzní prvek k x. Definice Bud A množina, binární operace na A. se nazývá asociativní : x,y,z A : (x y) z = x (y z) (asociativní zákon). Příklad(y) Operace +, na C a M n (C) jsou asociativní, stejně tak na M M a, na P(M). Naproti tomu operace, obecně nejsou asociativní! Věta Bud asociativní binární operace na A, x A, y 1 levý inverzní prvek k x, y 2 pravý inverzní prvek k x. Potom platí y 1 = y 2. Důkaz. y 2 = e y 2 = (y 1 x) y 2 = y 1 (x y 2 ) = y 1 e = y 1. Důsledek Je-li operace asociativní, existuje ke každému prvku nejvýše jeden inverzní prvek. Způsob označení pro inverzní prvek k x: x 1 při multiplikativním značení a x při aditivním značení (při aditivním značení se místo pojmu inverzní prvek používá také pojem opačný prvek). Definice Binárníoperace senazýváoperací s dělenímnaa: (a,b) A 2 (x,y) A 2 : a x = b (levý zákon o dělení) y a = b (pravý zákon o dělení). Věta Bud A a asociativní binární operace na A. Potom jsou následující tvrzení ekvivalentní: a) je operace s dělením na A. b) Existuje neutrální prvek e (vzhledem k ) a každý prvek x A je invertibilní, tzn. y A : x y = y x = e. 5

6 Důkaz. b) a): Pro x A necht x 1 značí prvek inverzní k prvku x a necht a,b A. Potom platí a (a 1 b) = (a a 1 ) b = e b = b a (b a 1 ) a = b (a 1 a) = b e = b. a) b): Necht a A je libovolné ale pevné. Potom platí: e 1,e 2 A : e 1 a = a = a e 2 (položme b = a,y = e 1,x = e 2 ). Pro libovolné b A pak platí: x A : b = a x e 1 b = e 1 (a x) = (e 1 a) x = a x = b, y A : b = y a b e 2 = (y a) e 2 = y (a e 2 ) = y a = b. Tedy jee 1 levý jednotkový prvek, e 2 pravý jednotkový prvek, aproto e 1 = e 2 =: ejednotkový prvek. Nyní ještě musíme ukázat, že ke kažému x A existuje inverzní prvek y. Jelikož je operace s dělením, platí: y 1,y 2 A : x y 1 = e y 2 x = e. Tedy je y 1 pravý inverzní prvek a y 2 levý inverzní prvek k x, odkud plyne y 1 = y 2 =: y. Proto je y inverzní prvek k x. Poznámka Je-li asociativní binární operace s dělením na neprázdné množině, pak podle předchozí věty mají rovnice a x = b a y a = b právě jedno řešení x,y. Ze vztahu a x 1 = b = a x 2 plyne totiž a 1 (a x 1 ) = a 1 (a x 2 ) a odtud (pomocí asociativního zákona) x 1 = x 2. Analogicky pro druhou rovnici. Definice Binární operace na A se nazývá operací s krácením : a,x 1,x 2,y 1,y 2 A : (a x 1 = a x 2 x 1 = x 2 ) (levý zákon o krácení) (y 1 a = y 2 a y 1 = y 2 ) (pravý zákon o krácení). Rovnice a x = b a y a = b mají tedy při operaci s krácením nejvýše jedno řešení a při asociativní operaci s dělením přesně jedno řešení. V tabulce operace: s krácením každý řádek (sloupec) obsahuje každý prvek nejvýše jedenkrát, s dělením každý řádek (sloupec) obsahuje každý prvek nejméně jednou. Pro konečnou množinu A platí: je operace s dělením je operace s krácením (Cvičení). Podle výše uvedené poznámky platí: je asociativní operace s dělením je operace s krácením. Příklad(y) Operace +, na N jsou s krácením, ale nikoliv s dělením. Definice Binární operace na A se nazývá komutativní : x,y A : x y = y x (komutativní zákon). Příklad(y) Následující operace nejsoukomutativní: na C, na C\{0}, na M n (C) pro n 2, na M M pro M 2. Definice Pokud jsou +, binární operace na A, potom se nazývá distributivní nad + : x,y,z A : x (y+z) = x y+x z (levý distributivní zákon) (y+z) x = y x+z x (pravý distributivní zákon). Poznámka Kvůli úspoře závorek se řídíme konvencí, při které výpočet operace se provede před výpočtem operace +. Příklad(y) Operace je distributivní nad + v C, M n (C). V P(M) je distributivní nad a je distributivní nad. 6

7 1.2 Některé důležité typy algeber Definice Algebra (A, ) typu (2) se nazývá grupoid. Definice Grupoid (H, ) se nazývá pologrupa : je asociativní. Příklad(y) (M M, ) je pologrupa, tzv. symetrická pologrupa nad M. Definice a) Pologrupa (H, ) se nazývá monoid typu (2) : existuje neutrální prvek e. b) Algebra (H,,e) typu (2,0) se nazývá monoid typu (2,0) : platí následující zákony pro všechna x,y,z H: 1) x(yz) = (xy)z, 2) ex = x, xe = x. Definice a) Monoid (G, ) s neutrálním prvkem e se nazývá grupa typu (2) : každý prvek x G je invertibilní, tj., x G x 1 G : xx 1 = x 1 x = e. b) Algebra (G,,e, 1 )typu (2,0,1)senazývá grupatypu (2,0,1): platínásledující zákony pro všechna x,y,z G: 1) x(yz) = (xy)z, 2) ex = x, xe = x, 3) xx 1 = e, x 1 x = e. c) Grupa (G, ), resp. (G,,e, 1 ) se nazývá komutativní nebo abelovská : x,y G : xy = yx. Poznámka (G, ) je grupa G a je asociativní operace s dělením. Definice a) Algebra (R,+, ) typu (2,2) se nazývá okruh typu (2,2) : 1) (R, +) je abelovská grupa, 2) (R, ) je pologrupa, 3) je distributivní nad +. b) Algebra (R,+,0,, ) typu (2,0,1,2) se nazývá okruh typu (2,0,1,2) : 1) (R,+,0, ) je abelovská grupa, 2) (R, ) je pologrupa, 3) je distributivní nad +. Prvek 0 se nazývá nulový prvek okruhu. Budeme psát x y := x+( y). Lemma Bud (R,+,0,, ) okruh. Potom platí pro všechna x,y,z R: a) x0 = 0 = 0x, b) x( y) = ( x)y = (xy), 7

8 c) ( x)( y) = xy, d) x(y z) = xy xz, (x y)z = xz yz. Důkaz. a) 0 = x0 = x(0 + 0) = x0 + x0 x0 x0 = x0 + x0 x0 0 = x0. Analogicky pro 0 = 0x. b) y + ( y) = 0 xy + x( y) = x0 = 0 xy + ( (xy)) + x( y) = 0 + ( (xy)) x( y) = (xy). Analogicky pro ( x)y = (xy). c) Plyne z b) a ( x) = x. d) x(y z) = x(y +( z)) = xy +x( z) = xy +( (xz)) = xy xz podle b). Analogicky pro (x y)z = xz yz. Příklad(y) (Z,+,0,, ) a (M n (C),+,0,, ) jsou okruhy. Definice a) Algebra (R,+,0,,,1)typu (2,0,1,2,0)se nazývá okruh s jednotkovým prvkem : 1) (R,+,0,, ) je okruh, 2) 1jeneutrální prvek vzhledem k, tj. x R : 1 x = x 1 = x (1se nazývá jednotkový prvek okruhu). b) Okruh (R,+,0,, ) se nazývá komutativní : x,y R : xy = yx. c) Algebra (R,+,0,,,1) se nazývá komutativní okruh s jednotkovým prvkem : 1) (R,+,0,, ) je komutativní okruh, 2) 1 je neutrální prvek vzhledem k. Příklad(y) (Z,+,0,,,1) je komutativní okruh s jednotkovým prvkem; stejně tak kažzdé pole (viz níže). Definice Komutativní okruh s jednotkovým prvkem (R,+,0,,,1) se nazývá obor integrity : 1) R\{0} (tj. 0 1), 2) x,y R : x 0 y 0 xy 0 (tj. neexistují dělitelé nuly). Lemma Je-li (R,+,0,,,1) obor integrity, potom je operace s krácením na R\{0}. Důkaz. Bud te x,y,z 0. Potom platí: xy = xz xy xz = 0 x(y z) = 0 y z = 0 y = z. Poznámka V oboru integrity je (R\{0},,1) komutativní monoid. Příklad(y) (Z,+,0,,,1) je obor integrity. Definice a) Okruh s jednotkovým prvkem (R,+,0,,,1) se nazývá těleso : 1) 0 1, 2) (R\{0}, ) je grupa. 8

9 b) Komutativní těleso se nazývá pole. Tedy komutativní okruh s jednotkovým prvkem (R,+,0,,,1) je pole 1) 0 1, 2) (R\{0}, ) je abelovská grupa. Příklad(y) ) (Q,+,0,,,1), (R,+,0,,,1), (C,+,0,,,1) jsou pole. 2) ) Bez důkazu: každé konečné těleso je pole (věta Wedderburnova). 3) Je-li p prvočíslo, potom je (Z p,+,0,,,1) pole (s p prvky). (K přesnější definici okruhu zbytkových tříd (Z n,+,0,,,1) modulo n viz odstavec 2.4.) Poznámka Z n je pole n je prvočíslo Z n je obor integrity (viz odstavec 2.4). Věta Každé pole je obor integrity. Každý konečný obor integrity je pole. Důkaz. Necht x 0, y 0 a xy = 0. Pak x 1 (xy)y 1 = 1 = 0, což je spor. Bud nyní R = {a 1,...,a n } konečný obor integrity. Pak je asociativní operace s krácením na konečné množině R \ {0}. Proto je operace s dělením, tedy (R \ {0}, ) je abelovská grupa. Definice Bud (K,+,0,,,1) pole, I = {a,b,c} K, kde a,b,c / K, a,b,c po dvou různé. Algebra (V,(ω i ) i I ) typu (2,0,1,(1) λ K ) se nazývá vektorový prostor nad K : 1) (V,ω a,ω b,ω c ) =: (V,+,0, ) je abelovská grupa, 2) x,y V,λ,µ K : ω λ (x+y) = ω λ (x)+ω λ (y), ω λ+µ (x) = ω λ (x)+ω µ (x), ω λµ (x) = ω λ (ω µ (x)), ω 1 (x) = x. V dalším textu polžíme ω λ =: λ a budeme zapisovat vektorový prostor jako (V,+,0,,K). Zákony uvedené v bodě 2) pak mají tvar: λ(x + y) = λx + λy, (λ + µ)x = λx + µx, (λµ)x = λ(µx), 1x = x. Definice Algebra (V,, ) typu (2,2) se nazývá svaz : pro všechna a,b,c V platí: 1) a b = b a, a b = b a, 2) a (b c) = (a b) c, a (b c) = (a b) c, 3) a (a b) = a, a (a b) = a. Podle 1) a 2) jsou a kommutativní a asociativní, tj. (V, ) a (V, ) jsou komutativní pologrupy. Zákony uvedené v bodě 3) se nazývají absorbční zákony. Příklad(y) (P(M),, ) je svaz. Poznámka (V,, ) je svaz (V,, ) je svaz. Zákony jsou symetrické v a tzv. princip duality pro svazy. 9

10 Definice Svaz (V,, ) se nazývá distributivní : pro všechna a,b,c V platí: 4) a (b c) = (a b) (a c), a (b c) = (a b) (a c) (tj. je distributivní nad a je distributivní nad ). Poznámka (V,, ) je distributivní svaz (V,, ) je distributivní svaz (princip duality). Dokonce platí, že je distributivní nad, právě když je distributivní nad. Příklad(y) (P(M),, ) je distributivní svaz. Definice Bud (V,, ) svaz. Prvek 0 V se nazývá nulový prvek svazu V : a V : a 0 = a (tj. 0 je neutrální vzhledem k ). Prvek 1 V se nazývá jednotkový prvek svazu V : a V : 1 a = a (tj. 1 je neutrální vzhledem k ). Poznámka Bud te b,c V, libovolné prvky. Pak platí a V : a b = a a V : a b = b, a V : c a = a a V : c a = c. Definice Algebra (V,,,0,1) typu (2,2,0,0) se nazývá ohraničený svaz : 1) (V,, ) je svaz, 2) 0 je nulový prvek svazu V, 3) 1 je jednotkový prvek svazu V. Příklad(y) (P(M),,,, M) je ohraničený svaz. Definice Ohraničený svaz (V,,,0,1) se nazývá komplementární : a V a V : a a = 0 a a = 1. Prvek a se nazývá komplement prvku a. Příklad(y) (P(M),,,,M) je komplementární svaz, přičemž pro A M je komplement dán vztahem A = M \A. Definice Distributivní a komplementární svaz (V,,,0,1) se nazývá Booleův svaz. Příklad(y) (P(M),,,,M) je Booleův svaz. Věta Je-li (V,,,0,1) Booleův svaz, pak existuje ke každému a V přesně jeden komplement a. Důkaz. Bud te a a a komplementy prvku a. Pak platí a a = 1 = a a, a a = 0 = a a, a tudíž a = a 0 = a (a a ) = (a a) (a a ) = 1 (a a ) = a a = a a =... = a. Definice Algebra (B,,,0,1, ) typu (2,2,0,0,1) se nazývá Booleova algebra : 1) (B,,, 0, 1) je ohraničený distributivní svaz, 2) a B : a a = 0 a a = 1. Poznámka (B,,,0,1, ) je Booleova algebra (B,,,0,1) je Booleův svaz. Pokud naopak (B,,,0,1) je Booleův svaz a a (jednoznačně určený) komplement prvku a, pak je (B,,,0,1, ) Booleova algebra. Příklad(y) (P(M),,,,M, ) je Booleova algebra. 10

11 1.3 Základní pojmy teorie grup Definice Bud (G, ) grupoid, a 1,...,a n G (n N). Potom je součin a 1 a n definován indukcí vztahem a 1 a n := (a 1 a n 1 )a n. Příklad(y) a 1 a 2 a 3 a 4 = (a 1 a 2 a 3 )a 4 = ((a 1 a 2 )a 3 )a 4. Definice Bud (G, ) grupoid, a G. Potom jsou mocniny prvku a definovány takto: a 1 := a, a n+1 := (a n )a (n N). Poznámka ) Při počítání se součiny v pologrupě je možno libovolně závorkovat (Cvičení). 2) Vkomutativní pologrupěplatí:a 1 a n = a π(1) a π(n),přičemžπ jelibovolnápermutace množiny M = {1,...,n}. Věta Bud (G,,e, 1 ) grupa, a,b G. Potom platí (ab) 1 = b 1 a 1. Důkaz. (ab)(b 1 a 1 ) = a(bb 1 )a 1 = aea 1 = a(ea 1 ) = aa 1 = e. Důsledek (a 1 a n ) 1 = a 1 n a 1 1. Důkaz. Indukcí podle n. Definice Bud (G,,e, 1 ) grupa, a G. Pro n N bud a n jak je definováno výše. Dále klademe a 0 := e a a n := (a 1 ) n, n N. Věta (Pravidla pro počítání s mocninami v grupách) Pro všechna a,b G, n,m Z platí: 1) a n a m = a n+m, 2) (a m ) n = a mn, 3) (ab) n = a n b n, pokud je komutativní. Důkaz. Rozlišíme jednotlivé případy. Např. 2) pro n > 0: (a m ) n = a m a m }{{} n-krát n-krát {}}{ = a m+ +m = a nm. Poznámka Tato pravidla platí pro m,n N také v pologrupách. Definice Bud (G,,e, 1 ) grupa, a G. Potom se kardinální číslo o(a) := {a 0 = e,a 1,a 1,a 2,a 2,...} = {a k k Z} nazývá řád prvku a. Poznámka o(a) N nebo o(a) = N = ℵ 0 (= ). 11

12 Příklad(y) ) V(Z, +, 0, ) píšeme(stejně tak ve všech grupách s aditivním značením) na místo a n. Výše uvedená pravidla pak mají následující tvar: (i) ma+na = (m+n)a, (ii) n(ma) = (mn)a, (iii) n(a+b) = na+nb. Platí o(0) = 1, o(k) = pro všechna k Z, k 0. (V každé grupě platí o(e) = 1.) 2) V grupě (C\{0},,1, 1 ) platí: o(1) = 1, o( 1) = 2, o(i) = o( i) = 4. Definice Bud (G,,e, 1 ) grupa. Potom se G (mohutnost množiny G) nazývá řád této grupy. Obecně se pro algebru (A,(ω i ) i I ) mohutnost A nazývá řád této algebry. Pro všechna a G platí: o(a) G. Lemma (Dělení se zbytkem) k,l Z,l 0 q,r Z : 0 r < l k = lq +r. Důkaz. Případ 1: k 0. Určitě existuje n N tak, že l n k (Archimedův axiom pro R). Bud q := max{n N 0 l n k} a q := q pro l > 0, q := q pro l < 0. Potom je k = lq +r, kde 0 r < l. Případ 2: k < 0 důkaz se provede podobně. Definice Pro n N, r,s Z je r s mod n ( r je kongruentní s s modulo n ) : n (r s) (n dělí (r s)). Platí: 1) r s mod n r = s+kn, k Z r,s mají stejný zbytek při dělení číslem n. 2) mod n je relace ekvivalence (viz později). Věta Bud (G,,e, 1 ) grupa, a G. a) Je-li o(a) =, pak jsou mocniny prvku a navzájem různé. b) Je-li o(a) = n N, potom platí n = min{m N a m = e} a {a k k Z} = {a 0 = e,a 1,...,a n 1 }. Dále je a r = a s r s mod n. Důkaz. a)bud o(a) = apředpokládejme,že r,s Z : r > s a r = a s.prom := r s N pak platí a m = e. Bud k Z. Potom je k = mq+l, q Z, l N 0 a 0 l < m. Odtud plyne a k = a mq+l = (a m ) q a l = e q a l = a l, tedy {a k k Z} = {e,a,...,a m 1 }. To je spor, nebot o(a) =. b) Je-li o(a) = n N, potom podle a) existuje m N takové, že a m = e, což dává {a k k Z} = {e,a,...,a m 1 }. Bud n 0 = min{m N a m = e}. Potom je a n 0 = e a prvky e,a,...,a n 0 1 jsou po dvou různé. Pokud by totiž tomu tak nebylo, potom by platilo a r = a s pro 0 s < r < n 0. Tedy bychom měli a r s = e pro 0 < r s < n 0, což je spor s minimalitou čísla n 0. Proto platí n = n 0. Takže máme {a k k Z} = {e,a,...,a n 1 }. Dokážeme ted ještě, že a r = a s r s mod n. : a r = a s a r s = e, r s = nq+l, 0 l < n e = a r s = (a n ) q a l = e q a l = a l l = 0 r s = nq r s mod n. : r s mod n r s = nq a r s = a nq = (a n ) q = e a r = a s. 12

13 Příklad(y) Bud M množina a S M := {f : M M f bijektivní}. (S M,,id M, 1 ) je grupa, která se nazývá symetrická grupa na M (Cvičení). Prvky množiny S M se nazývají permutace množiny M. Je-li M = {1,2,...,n}, píšeme S n místo S M. Platí: S n = n!. Je tedy např. S 3 = {( ) 123, 123 používáme-li cyklický zápis : ( ) 123, 231 ( ) 123, 312 ( ) 123, 132 ( ) 123, 321 S 3 = {(1),(123),(132),(23),(13),(12)}. ( )} 123, 213 Připomeňme, že permutace f : M M je sudá (lichá), má-li sudý (lichý) počet inverzí, tj. dvojic prvků x,y M takových, že x < y a f(x) > f(y). Snadno se ukáže, že parita permutace je rovna paritě počtu jejich cyklů sudé délky. Sudé permutace tvoří tzv. alternující grupu A n. V našem případě je množina sudých permutací A 3 = {(1),(123),(132)}. Řády prvků grupy S 3 : π o(π) (1) 1 (123) 3 (132) 3 (23) 2 (13) 2 (12) 2 Platí: Každý prvek grupy S n je možno vyjádřit jako součin (tj. složení) cyklů s různými prvky. Toto vyjádření je až na pořadí cyklů jednoznačné. Např. permutace ( ) π = z grupy S 9 má cyklické vyjádření (16)(29738)(45). Platí o(π) = 2 5 = NSN(2,5,2). Řád součinu cyklů s různými prvky je nejmenší společný násobek délek všech činitelů (tj. řádů všech činitelů, protože každý cyklus je permutací množiny všech prvků, které obsahuje, a jeho řád je stejný jako jeho délka). 13

14 Kapitola 2 Základní algebraické metody 2.1 Podalgebry Definice 2.1. Bud A množina, ω : A n A n-ární operace na A (n N 0 ), T A. Potom se množina T nazývá uzavřenávzhledem k ω : ω(t n ) T (tj. t 1,...,t n T ωt 1...t n T; v případě n = 0: ω T). Definice 2.2. Bud A = (A,(ω i ) i I ) algebra typu (n i ) i I, T A. Potom se množina T nazývá uzavřená vzhledem k (ω i ) i I : T je uzavřená vzhledem k ω i pro všechna i I. V tomto případě se pomocí vztahu ω i x 1...x ni := ω i x 1...x ni, (x 1,...,x ni ) T n i, definuje n i - ární operace ω i na T, tj. ω i = ω i T n i. Algebra (T,(ω i) i I ) se pak nazývá podalgebra algebry A. Většinou píšeme: ω i =: ω i. Poznámka 2.3. Často také nazýváme podalgebrou algebry A pouze množinu T. Podalgebry speciálních algebraických struktur 1) Bud (H, ) pologrupa. T H je podalgebrou algebry (H, ) (x,y T xy T). Pak je = T T binární operace na T a (T, ) je pologrupa, nebot asociativní zákon platí v H, a tedy i v T. (Obecně: Je-li v algebře definovaná vlastnost nějaké operace pomocí nějakého zákona, pak má tato operace zúžená na některou podalgebru tuto vlastnost přirozeně také.) (T, ) se nazývá podpologrupa pologrupy (H, ). 2) 2) Bud (G, ) grupa typu (2) a (T, ) podpologrupa pologrupy (G, ). Potom není obecně (T, ) grupa! Příklad(y) 2.4. (G, ) = (Z,+), (T, ) = (N,+). 3) Bud (G,,e, 1 ) grupa typu (2,0,1). T G je podalgebra x,y T xy T { T e T x T x 1 x,y T xy T 1 T }. Protože zákony grupy typu (2,0,1) platí v G, a tedy také v T, je podalgebra (T,,e, 1 ) opět grupou a nazývá se podgrupa grupy (G,,e, 1 ). 4) 4) Je-li (R,+,0,, ) okruh typu (2,0,1,2), potom je podalgebra (T,+,0,, ) opět okruhem a nazývá se podokruh okruhu (R,+,0,, ). To neplatí pro okruhy typu (2,2). Příklad(y) 2.5. (N, +, ) je podalgebrou (Z, +, ), ale nikoliv podokruhem. 14

15 5) Bud (K,+,0,,,1) pole typu (2,0,1,2,0) a (T,+,0,,,1) podalgebra (tj. podokruh se stejným jednotkovým prvkem). Je-li (T,+,0,,,1) samotná polem, pak se nazývá podpole pole (K,+,0,,,1). Platí: T je podpole x,y T x+y T 0 T x T x T x,y T xy T 1 T x T,x 0 x 1 T. Příklad(y) 2.6. (R,+,0,,,1)jepodpolempole(C,+,0,,,1),zatímco(Z,+,0,,,1) není. 6) Bud (V,+,0,,K) vektorový prostor nad K a (T,+,0,,K) podalgebra, tj. x,y T x+y T 0 T x T x T λ K,x T λx T. Potom je také (T,+,0,,K) vektorový prostor nad K a nazývá se vektorový podprostor. Věta 2.7. Bud (A,Ω) algebra a (T j ) j J soubor podalgeber. Potom je j J T j rovněž podalgebra. Poznámka 2.8. Průnik, který se vyskytuje v předchozí větě, se definuje pomocí vztahu j J T j := {x A j J : x T j }. Pro J = je j J T j = A. Důkaz. Bud Ω = (ω i ) i I, ω i n i -ární operace, a T := j J T j. Bud i I, přičemž n i > 0, a bud te x 1,...,x ni T. Potom platí j J : x 1,...,x ni T j, tedy j J: ω i x 1...x ni T j. Proto ω i x 1...x ni T. Pro n i = 0 platí j J : ω i T j, takže ω i T. Věta 2.9. Bud (A,Ω) algebra a S A podmnožina. Potom je S := {T T S, T je podalgebra algebry (A,Ω)} nejmenší podalgebra algebry (A, Ω), která S obsahuje. Definice S se nazývá podalgebra algebry (A, Ω) generovaná množinou S. Množina S se nazývá systém generátorů podalgebry S. Věta Bud (G,,e, 1 ) grupa, x G, S = {x}. Potom platí: x := S = {x k k Z}. Důkaz. Máme dokázat: x = {x k k Z} =: T. : T je podgrupa grupy (G,,e, 1 ). Necht x k,x l T, k,l Z. Potom platí x k x l = x k+l T (jelikož k +l Z), x 0 T (protože 0 Z), (x k ) 1 = x k T (nebot k Z). Dále platí x = x 1 T, tedy {x} T, odkud plyne x T. : Bud U podgrupa grupy (G,,e, 1 ), kde {x} U, tj. x U. Potom platí x n U (n N), e = x 0 U, x n = (x n ) 1 U, takže T U. Zejména tedy T x. 15

16 Definice x se nazývá podgrupa grupy (G,,e, 1 ) generovaná prvkem x. Poznámka ) Pro vektorové prostory máme: {x 1,...,x n } = { λ i x i λ i K}. 1 i n 2) Je-li (G,,e, 1 ) abelovská grupa, potom platí: {x 1,...,x n } = {x k 1 1 xk 2 2 xkn n k i Z}. Vyjádříme-li abelovskou grupu ve tvaru (G, +, 0, ), potom platí: 3) Pro neabelovské grupy platí např.: 4) Obecně platí: {x 1,...,x n } = {k 1 x 1 +k 2 x 2 + +k n x n k i Z}. {x 1,x 2 } = {x k 11 1 x k 12 2 x k 21 1 x k 22 2 x k n1 1 x k n2 2 n N, k ij Z}. {x 1,...,x n } = {t(x 1,...,x n ) t je libovolný n-ární term v algebře (A,Ω)}. Definice Grupa (G,,e, 1 ) se nazývá cyklická : x G : G = x. Prvek x se pak nazývá generátor. Z Věty 1.83 a Věty 2.11 plyne Důsledek Bud (G,,e, 1 ) cyklická grupa a necht x = G. Potom můžeme rozlišit dva případy: a) Je-li o(x) =, potom je také G nekonečná a platí G = {e,x,x 1,x 2,x 2,...}. b) Je-li o(x) = n N, potom máme G = n, a platí G = {e,x,x 2,...,x n 1 }. V obou případech jsou uvedené mocniny v dané množině navzájem různé. Příklad(y) K a): pro (Z,+,0, ) platí Z = 1 = 1. K b): pro (Z m,+,0, ) (operace modulo m, viz odstavec 2.4) platí Z m = 1 = k, kde NSD(m,k) = 1 (Cvičení). 2.2 Relace ekvivalence a rozklad na třídy ekvivalence Definice Je-li M množina, potom se podmnožina R množiny M M nazývá binární relace na M. Místo (x,y) R píšeme většinou xry. Speciální relace: α M := M M se nazývá univerzální relace, ι M := {(x,x) x M} se nazývá identická relace nebo relace rovnosti. Definice Relace R M M se nazývá: 16

17 1) reflexivní : ι M R, tj., x M : xrx. 2) symetrická : x,y M : xry yrx. 3) antisymetrická : x,y M : xry yrx x = y. 4) transitivní : x,y,z M : xry yrz xrz. Relace splňující 1), 2) a 4) se nazývá relace ekvivalence, relace splňující 1), 3) a 4) se nazývá relace (částečného) uspořádání. Příklad(y) α M a ι M jsou vždy relace ekvivalence. Relace na množině R, na množině P(M) a (dělí) na množině N jsou relace uspořádání. Definice Bud M množina. P P(M) se nazývá rozklad množiny M na třídy ekvivalence třídy ekvivalence : 1) C P C = M, 2) / P, 3) A,B P A = B A B = (tj. množiny v P jsou po dvou disjunktní). Věta Bud π relace ekvivalence na množině M, a M, [a] π := {b M bπa} tzv. třída ekvivalence prvku a a M/π := {[a] π a M} tzv. faktorová množina množiny M podle ekvivalence π. Potom je M/π rozklad množiny M na třídy ekvivalence. Je-li naopak P rozklad množiny M na třídy ekvivalence a π je definováno vztahem aπb : C P : a,b C, potom je π relace ekvivalence na množině M, a platí M/π = P. π M/π je bijektivní zobrazení množiny všech relací ekvivalence na množině M na množinu všech rozkladů množiny M na třídy ekvivalence. Inverzní zobrazení je dáno výše uvedeným předpisem P π. Důkaz. Úloha k procvičení. Věta Bud te M,N množiny, f : M N zobrazení a xπ f y : f(x) = f(y). Potom platí: a) π f je relace ekvivalence na M, která se nazývá jádro f. b) Zobrazení { M/πf f(m) := {f(x) x M} N [x] πf f(x) je korektně definováno a bijektivní. Důkaz. Úloha k procvičení. Poznámka Význam zobrazení definovaného v předchozí větě je možno znázornit následujícím komutativním diagramem : 17

18 Zde je M f ν g M/π f { M M/πf ν : x [x] πf kanonické neboli faktorové zobrazení a g zobrazení { M/πf f(m) [x] πf f(x). Platí: f = g ν. Rozklad grupy na třídy podle podgrupy f(m) N Označení:Pokudnebudemocidojítknedorozumění,budemedálečastoklástG := (G,,e, 1 ), resp. G := (G, ), tj. označíme grupu tímtéž symbolem jako její nosnou množinu. Podobně pro okruhy. Věta Bud (G,,e, 1 ) grupa a (H,,e, 1 ) podgrupa grupy G. Bud dále π G G podmnožina definovaná pomocí vztahu xπy : x 1 y H, x,y G. Potom je π relace ekvivalence na G. Důkaz. 1) π je reflexivní: x : xπx, nebot x 1 x = e H. 2) π je symetrická: xπy x 1 y H (x 1 y) 1 = y 1 x H yπx. 3) π je tranzitivní: xπy, yπz x 1 y H, y 1 z H (x 1 y)(y 1 z) = x 1 z H xπz. Poznámka Analogicky platí: pomocí vztahu x y : xy 1 H je na G rovněž definována relace ekvivalence. Definice Bud (G,,e, 1 ) grupa, A,B G. Potom se nazývá AB := {ab a A, b B} složený součin A a B. Speciální případy: A = {a}: AB =: ab = {ab b B}, B = {b}: AB =: Ab = {ab a A}. Pro podgrupu H grupy G se nazývá ah levá třída rozkladu grupy G podle H a Ha se nazývá pravá třída rozkladu grupy G podle H (a G pevné ale libovolné). Věta Bud te π, výše definované relace ekvivalence na grupě G. Potom platí pro všechna a G: [a] π = ah, [a] = Ha. Důkaz. Platí {y a 1 y H} = ah ( : a 1 y = x H y = ax ah; : y = ax ah a 1 y = x H). Odtud plyne [a] π = {y aπy} = {y a 1 y H} = ah. Důkaz vztahu [a] = Ha se provede analogicky. 18

19 Důsledek {ah a G} je rozklad grupy G na třídy ekvivalence, který se nazývá levý rozklad grupy G podle H. Podobně se nazývá {Ha a G} pravý rozklad grupy G podle H. Příklad(y) G = S 3 = {(1),(123),(132),(12),(23),(13)}, H = {(1),(23)}. (1)H=H (123)H={(123),(12)} (132)H={(132),(13)} H(1)=H H(123)={(123),(13)} H(132)={(132),(12)} Obecně tedy platí Ha ah! Pro a = e však platí vždy He = eh = H. V abelovských grupách platí Ha = ah pro všechna a G. Věta Bud (G,,e, 1 ) grupa, H podgrupa grupy G, a,b G. Potom je vztahem { ah bh i : ax bx definováno bijektivní zobrazení. Důkaz. 1) i je korektně definováno: ax 1 = ax 2 x 1 = x 2 bx 1 = bx 2. 2) i je injektivní: i(ax 1 ) = i(ax 2 ) bx 1 = bx 2 x 1 = x 2. 3) i je surjektivní: každé bx bh je obrazem ax ah. Důsledek a,b G : ah = bh = H. (Analogicky: a G : Ha = H.) Věta Vztahem ah Ha 1, a G, je definováno bijektivní zobrazení ϕ levého rozkladu na pravý rozklad grupy G podle H. Důkaz. 1) ϕ je korektně definováno: ah = bh aπb a 1 b H a 1 b 1 Ha 1 = Hb 1. 2) ϕ je surjektivní: a G : ϕ(a 1 H) = Ha. 3) ϕ je injektivní: ϕ(ah) = ϕ(bh) Ha 1 = Hb 1 a 1 b 1 a 1 b H aπb ah = bh. Definice Počet všech různých tříd levého rozkladu (pravého rozkladu) grupy G podle H se nazývá index podgrupy H v G, formálně: [G : H] := {ah a G} = {Ha a G}. Věta (Lagrangeova) Bud (G,,e, 1 ) konečná grupa, H podgrupa G. Potom platí: [G : H] H = G. Poznámka Lagrangeova věta platí také pro nekonečné grupy. Důsledek a) Je-li H podgrupa G, pak H dělí G. b) x G o(x) = {x n n Z} = x dělí G. c) G = p prvočíslo, H podgrupa G H = {e} nebo H = G. Pro x G, x e, dostáváme x = G, tedy G je cyklická. 19

20 2.3 Izomorfizmy a homomorfizmy Definice Bud te A = (A,(ω i ) i I ) a A = (A,(ω i) i I ) algebry téhož typu (n i ) i I. Zobrazení f : A A se nazývá homomorfizmus algebry A do algebry A : 1) Pro i I, kde n i > 0, platí x 1,...,x ni A : f(ω i x 1...x ni ) = ω i f(x 1)...f(x ni ), 2) pro i I, kde n i = 0, platí f(ω i ) = ω i. Lemma Bud te (G,,e, 1 ) a (H,,e, 1 ) grupy, f : G H. Potom platí: f je homomorfizmus grupy (G,,e, 1 ) do grupy (H,,e, 1 ) f je homomorfizmus grupy (G, ) do grupy (H, ). Důkaz. : Triviální. : Necht f(xy) = f(x)f(y). Máme ukázat, že f(e) = e, f(x 1 ) = (f(x)) 1. Platí ee = e f(e)f(e) = f(e) f(e) = e. Dále, xx 1 = e f(x)f(x 1 ) = f(e) = e = f(x)(f(x)) 1 f(x 1 ) = (f(x)) 1. Důsledek ) Bud te V = (V,+,0,,K) a W = (W,+,0,,K) vektorové prostory nad tímtéž polem K a f : V W. Potom platí: f je homomorfizmus vektorovéhoprostoru V do vektorového prostoru W f je lineární zobrazení, tj. x,y V : f(x + y) = f(x)+f(y), λ K,x V : f(λx) = λf(x). 2) Bud te (R,+,0,, ) a (S,+,0,, ) okruhy, f : R S. Potom platí: f je homomorfizmus okruhu (R,+,0,, ) do okruhu (S,+,0,, ) f je homomorfizmus okruhu (R,+, ) do okruhu (S,+, ). Definice Bud te A = (A,(ω i ) i I ) a A = (A,(ω i) i I ) algebry téhož typu (n i ) i I a f : A A homomorfizmus algebry A do algebry A. f se nazývá 1) izomorfizmus, pokud je f bijektivní (v tomto případě říkáme, že A je izomorfní obraz A, a píšeme A = A ), 2) endomorfizmus, pokud A = A, 3) automorfizmus, pokud A = A a f izomorfizmus, 4) epimorfizmus,pokudjef surjektivní (vtomtopřípaděsenazývá A homomorfní obraz A), 5) monomorfizmus, pokud je f injektivní (v tomto případě se nazývá A izomorfně vnořená v A ). Lemma a) Bud te A, A, A algebry téhož typu, f homomorfizmus algebry A do algebry A, g homomorfizmusalgebry A do algebrya. Potom je g f homomorfizmus algebry A do algebry A. Jsou-li f,g izomorfizmy, pak je také g f izomorfizmus. b) Je-li f izomorfizmus A do A, pak je f 1 izomorfizmus A do A. Důkaz. Cvičení. Obrazy a (úplné) vzory podalgeber při homomorfizmech jsou opět podalgebry (Cvičení). (Je-li f : A A zobrazení, U A, pak se f 1 (U ) := {x A f(x) U } nazývá úplný vzor U.) 20

21 Homomorfizmy a zákony Věta Bud (H, ) pologrupa, (H, ) grupoid a f : H H homomorfizmus. Potom je podalgebra (f(h), ) grupoidu (H, ) pologrupa. Důkaz. Bud te x,y,z f(h). Potom existuje a,b,c H, kde f(a) = x, f(b) = y a f(c) = z. Protože (H, ) je pologrupa, platí a(bc) = (ab)c, tudíž f(a)(f(b)f(c)) = (f(a)f(b))f(c), tedy x(yz) = (xy)z. Poznámka Bud te (A,(ω i ) i I ) a (A,(ω i ) i I) algebry téhož typu, f : A A epimorfizmus (tj. A je homomorfní obraz A). Platí-li pro vhodné termy t 1,t 2 v A rovnice (zákon) a,b,c,... : t 1 (a,b,c,...) = t 2 (a,b,c,...), pak plyne ze vztahu t 1 (f(a),f(b),f(c),...) = f(t 1 (a,b,c,...)) = f(t 2 (a,b,c,...)) = t 2 (f(a),f(b),f(c),...), že zákon platí též v A. Termy jsou přitom vytvořeny z konečného počtu proměnných a symbolů operací (pro A, resp. A ). Poznámka Je-li (A,(ω i ) i I ) algebra, pak nazýváme (ω i ) i I fundamentální operace, příslušné termy naproti tomu nazýváme odvozené operace. Interpretace věty 2.42: každý homomorfní obraz pologrupy je pologrupa. Analogicky se dá ukázat: každý homomorfní obraz 1) (abelovské) grupy je (abelovská) grupa, 2) (komutativního) okruhu je (komutativní) okruh, 3) okruhu s jednotkovým prvkem je okruh s jednotkovým prvkem, 4) svazu je svaz, 5) Booleovy algebry je Booleova algebra, 6) vektorového prostoru nad K je vektorový prostor nad K. Bud (A, ) grupoid, kde A = {a 1,...,a n }, a (A, ) další grupoid, kde A = n, f : A A izomorfizmus, A = {a 1,...,a n}, kde a i = f(a i ), 1 i n. Tabulky operací obou algeber pak vypadají následovně: a 1... a n a 1 a 1 a 1... a 1 a n a n a n a 1... a n a n a 1... a n a 1 a 1 a 1... a 1 a n a n a n a 1... a n a n Je-li v levé tabulce a i a j = a k, pak je v pravé tabulce a i a j = a k. Z algebraického hlediska je proto izomorfizmus pouhé přeznačení. Na izomorfní algebry je nutno pohlížet jako na stejné. Algebraické vlastnosti jsou takové vlastnosti, které zůstávají zachovány při izomorfizmech. Například všechny zákony jsou algebraickými vlastnostmi, protože podle výše uvedené poznámky zůstávají zachovány dokonce už při epimorfizmech. Často je možné charakterizovat algebraické struktury až na izomorfizmus. Tak jsou např. všechny konečnědimenzionální vektorové prostory nad K až na izomorfizmus dány vektorovým prostorem K n, n N 0 (s obvyklými operacemi). Analogická tvrzení uvedeme pro konečná pole a konečné Booleovy algebry. Dalším výsledkem v tomto směru je následující věta: Věta (Cayleyova věta o reprezentaci) Bud (G,,e, 1 ) grupa. Potom je G izomorfní s podgrupou symetrické grupy (S G,,id G, 1 ). Krátce: Každá grupa je izomorfní s nějakou grupou permutací. 21

22 Důkaz. Zkonstruujemevnoření(monomorfizmus)π : G S G,a π a,následujícímzpůsobem: g G : π a (g) := ag. 1) π a S G, tj., π a je injektivní a surjektivní (injektivní: π a (g 1 ) = π a (g 2 ) ag 1 = ag 2 g 1 = g 2 ; surjektivní: h G h = π a (a 1 h)). 2) π je injektivní: π a1 = π a2 π a1 (e) = π a2 (e) a 1 e = a 2 e a 1 = a 2. 3) π ab = π a π b : π ab (g) = (ab)g = a(bg) = π a (bg) = π a (π b (g)) = (π a π b )(g). Poznámka Analogická věta platí také pro monoidy. 2.4 Relace kongruence a faktorové algebry Definice Bud A = (A,(ω i ) i I ) algebra typu (n i ) i I a π relace ekvivalence na A. π se nazývá (relace) kongruence na A : pro všechna i I, kde n i > 0, a 1,...,a ni,b 1,...,b ni A, platí a 1 πb 1... a ni πb ni ω i a 1...a ni πω i b 1...b ni. Příklad(y) Bud A = (Z,+,0,,,1) obor integrity celých čísel a n N 0 pevné (n se nazývá modul). Necht binární relace π na Z je definována pomocí vztahu: aπb : c Z : a b = cn, a,b Z. Dále budeme psát podobně jako v odstavci 1.3 a b mod n místo aπb. Platí: modn je relace kongruence nebot : 1) modn je relace ekvivalence: a a mod n protože a a = 0 = 0n; a b mod n a b = cn b a = ( c)n b a mod n; a b mod n b c mod n a b = d 1 n b c = d 2 n a c = (d 1 +d 2 )n a c mod n. 2) Operace +: a 1 b 1 mod n a 2 b 2 mod n a 1 b 1 = c 1 n a 2 b 2 = c 2 n (a 1 +a 2 ) (b 1 +b 2 ) = (c 1 +c 2 )n (a 1 +a 2 ) (b 1 +b 2 ) mod n. 3) Operace : a b mod n a b = cn ( a) ( b) = ( c)n ( a) ( b) mod n. 4) Operace : a 1 b 1 mod n a 2 b 2 mod n a 1 = b 1 + c 1 n a 2 = b 2 + c 2 n a 1 a 2 = b 1 b 2 +(b 1 c 2 +b 2 c 1 +c 1 c 2 n)n a 1 a 2 b 1 b 2 mod n. Příslušný rozklad na třídy: Platí [a] = {a + kn k Z}. Pro n = 0 máme [a] = {a} pro všechna a Z ( modn je potom relace rovnosti). Pro n > 0 platí: Z n := Z/ modn = {[a] a Z} = {[0],...,[n 1]}. Věta Bud A = (A,(ω i ) i I ) algebra a π kongruence na A. Potom jsou vztahy ω i [a 1] π...[a ni ] π := [ω i a 1...a ni ] π, n i > 0, a 1,...,a ni A, ω i := [ω i ] π, n i = 0, definovány operace (ω i ) i I na faktorové množině A/π. Důkaz. Operace jsou korektně definovány: [a 1 ] π = [b 1 ] π a 1 πb 1. [a ni ] π = [b ni ]. π a ni πb ni Proto je [ω i a 1...a ni ] π = [ω i b 1...b ni ] π. 22 ω ia 1...a ni πω i b 1...b ni.

23 Definice Algebra A/π := (A/π,(ω i ) i I) se nazývá faktorová algebra algebry A podle kongruence π. Často klademe ω i := ω i. Příklad(y) A = (Z,+,0,,,1), π = modn. Faktorová algebra A/π je potom dána pomocí vztahu (Z n,+,0,,,1 ), kde [a] + [b] = [a + b], 0 = [0], [a] = [ a], [a] [b] = [ab], 1 = [1] (tj. počítáme s reprezentanty tříd). Dále budeme symbol u operací vynechávat.platí(viznásledující věta):(z n,+,0,,,1)jekomutativní okruhsjednotkovým prvkem, který se nazývá okruh zbytkových tříd modulo n. Věta Bud A = (A,(ω i ) i I ) algebra, π kongruence na A. Potom je zobrazení { A A/π ν : a [a] π surjektivní homomorfizmus algebry A na A/π, který se nazývá přirozený homomorfizmus. Důkaz. ν(ω i a 1...a ni ) = [ω i a 1...a ni ] π = ω i [a 1 ] π...[a ni ] π = ω i ν(a 1 )...ν(a ni ), n i > 0, ν(ω i ) = [ω i ] π = ω i, n i = 0. Důsledek a) A/π je homomorfní obraz A. b) Každý zákon, který platí v A, platí také v A/π. Speciálně je tedy i) každá faktorová algebra pologrupy pologrupou, ii) každá faktorová algebra (abelovské) grupy (abelovskou) grupou, iii) každá faktorová algebra vektorového prostoru vektorovým prostorem, iv každá faktorová algebra (komutativního) okruhu (komutativním) okruhem, v) každá faktorová algebra okruhu s jednotkovým prvkem okruhem s jednotkovým prvkem, vi) každá faktorová algebra svazu (resp. Booleovy algebry) svazem (resp. Booleovou algebrou). Poznámka Faktorová algebra oboru integrity nemusí být oborem integrity, jak je vidět na příkladu (Z n,+,0,,,1), kde n N není prvočíslo. Věta (O homomorfizmu) Bud te A = (A,(ω i ) i I ) a A = (A,(ω i ) i I) algebry téhož typu (n i ) i I a f : A A homomorfizmus. Potom je jádro π f kongruencí na A a existuje přesně jeden injektivní homomorfizmus g z A/π f do A takový, že f = g ν (ν je přirozené zobrazení). Důkaz. 1)π f jerelaceekvivalenceaexistujeinjektivnízobrazeníg : A/π f A,kdef = g ν (viz odstavec 2.2). 2) π f je kongruence: Bud i I, n i > 0. Máme: a 1 π f b 1 f(a 1 ) = f(b 1 ). a ni π f b. ni f(a ni ) = f(b ni ) ω i f(a 1)...f(a ni ) = ωi f(b 1)...f(b ni ) 23

24 f(ω i a 1...a ni ) = f(ω i b 1...b ni ) ω i a 1...a ni π f ω i b 1...b ni. Jednoznačnost g je triviální: g([a] πf ) = g(ν(a)) = (g ν)(a) = f(a). 3) g je homomorfizmus: Bud i I, n i > 0, potom platí: g(ω i [a 1 ] πf...[a ni ] πf ) = g([ω i a 1...a ni ] πf ) = g(ν(ω i a 1...a ni )) = f(ω i a 1...a ni ) = ω if(a 1 )...f(a ni ) = ω ig(ν(a 1 ))...g(ν(a ni )) = ω ig([a 1 ] πf )...g([a ni ] πf ). Analogicky pro n i = 0: g(ω i ) = g([ω i ] πf ) = f(ω i ) = ω i. Důsledek Pro podalgebru (f(a),(ω i ) i I) algebry A platí (f(a),(ω i ) i I) = A/π f, tedy je každý homomorfní obraz algebry izomorfní s nějakou faktorovou algebrou. Poznámka Relace rovnosti ι = {(x,x) x A} a univerzální relace α = A A jsou vždy kongruencemi na A a nazývají se triviální kongruence na A. Platí: A/ι = A a A/α 1. A/ι a A/α jsou triviální faktorové algebry. Definice Algebra A se nazývá prostá, má-li pouze triviální kongruence. Poznámka Algebra A je prostá tehdy a jen tehdy, když má pouze triviální homomorfní obrazy (tj. pouze obrazy izomorfní s A, resp. nejvýše jednoprvkové homomorfní obrazy). 2.5 Relace kongruence na grupách a okruzích Věta Bud (G,,e, 1 ) grupa a π relace ekvivalence na G. Potom platí: a) π je kongruence na (G,,e, 1 ) π je kongruence na (G, ). b) Je-li π kongruence na (G, ) a [e] π =: N, potom platí: i) N je podgrupa (G,,e, 1 ). ii) xnx 1 = {xyx 1 y N} N pro všechna x G. iii) xπy x 1 y N pro všechna x,y G (tj., [x] π = xn pro všechna x G). Důkaz. a) : Triviální. : xπy x 1 πx 1 } { e = xx 1 πyx 1 y 1 πy 1 } y 1 πy 1 yx 1 = x 1. b) i) e N protože eπe. x,y N xπe yπe xyπee = e xy N. x N xπe x 1 πe 1 = e x 1 N. ii) y N yπe xyx 1 πxex 1 = e xyx 1 N. iii) : xπy e = x 1 xπx 1 y x 1 y N. : x 1 y N x 1 yπe y = xx 1 yπxe = x. Definice Podgrupa N grupy (G,,e, 1 ) se nazývá normální podgrupa grupy G (symbolicky: N G) : xnx 1 N pro všechna x G. Poznámka V abelovské grupě je každá podgrupa normální podgrupou. Pro neabelovské grupy tomu tak není. Např. existují podgrupy grupy S 3, které nejsou normálními podgrupami, totiž: {(1),(12)}, {(1),(13)} a {(1),(23)}. 24

25 Lemma Pro podgrupu N grupy G jsou následující tvrzení ekvivalentní: a) N je normální podgrupa grupy G. b) x G : xnx 1 = N. c) x G : Nx = xn, tj. pravá třída rozkladu = levá třída rozkladu. Důkaz. a) b): N normální podgrupa x G : xnx 1 N x G : x 1 Nx N x G : N = xx 1 Nxx 1 xnx 1 x G : xnx 1 = N. b) a) je triviální. b) c): xnx 1 = N xn = xnx 1 x = Nx; xn = Nx xnx 1 = Nxx 1 = N pro všechna x G. Věta Bud (G,,e, 1 ) grupa, N G a π bud binární relace na G definovaná vztahem xπy : x 1 y N, x,y G. Potom je π relace kongruence na G, kde [e] π = N. Důkaz. π je relace ekvivalence a [x] π = xn = Nx podle Věty 2.24 a Lemmatu π je kongruence: } { } x 1 πy 1 x1 = y 1 n 1, kde n 1 N (nebot x 1 y 1 N) x 2 πy 2 x 2 = n 2 y 2, kde n 2 N (nebot x 2 Ny 2 ) x 1 x 2 = y 1 n 1 n 2 y 2 y 1 Ny 2 = y 1 y 2 N x 1 x 2 πy 1 y 2. Dále platí [e] π = en = N. Věta Vztahem π [e] π je definováno bijektivní zobrazení množiny kongruencí na grupě G na množinu všech normálních podgrup grupy G. Inverzní zobrazení je dáno pomocí vztahu N π, kde xπy : x 1 y N. Důkaz. Obě přiřazení jsou navzájem inverzní: π [e] π =: N π 1, kde xπ 1 y : x 1 y N xπy, tj. π = π 1. Obráceně: N π [e] π = N. Chceme-li najít všechny homomorfní obrazy až na izomorfizmus nějaké grupy G, můžeme tedy určit všechny normální podgrupy N grupy G a vytvořit faktorové algebry G/π pomocí odpovídajících kongruencí. Pokud normální podgrupě N odpovídá kongruence π, píšeme G/N := G/π = {xn x G}. Takováto faktorová algebra se nazývá faktorgrupa grupy G. Ve faktorgrupě G/N se počítá následujícím způsobem: (xn)(yn) = (xy)n, en = N je jednotkový prvek, (xn) 1 = x 1 N. Triviálním kongruencím ι = {(x,x) x G} a α = G G odpovídají tzv. triviální normální podgrupy {e} a G. Odtud plyne: G je prostá G má pouze triviální normální podgrupy. Příklad(y) ) Každá cyklická grupa G = x taková, že o(x) = p (p prvočíslo), je prostá (věta Lagrangeova). Obráceně platí: Každá prostá abelovská grupa G, kde G > 1, je cyklická a má prvočíselný řád (Cvičení). 2) Alternující grupa A n (viz Příklad 1.84) je prostá pro n 4. 3) Symetrická grupa S n není pro n 3 prostá, nebot platí A n S n. Levý (pravý) rozklad S n na třídy podle A n je roven {A n,s n \A n }, tedy platí [S n : A n ] = 2 (index A n v S n ). 25

26 Věta Bud G grupa, U podgrupa, kde [G : U] = 2. Potom platí U G. Důkaz. x U xu = Ux = U. x / U xu = Ux = G\U. Poznámka Také pro vektorové prostory platí podobný výsledek jako pro grupy: Vztahemπ [0] π jedefinovánobijektivnízobrazenímnožinyvšechrelacíkongruencevektorového prostoru (V,+,0,,K) na množinu všech podprostorů prostoru V (Důkaz podobný jako u grup). Je-li U podprostor prostoru V, pak je V/U = {x+u x V} faktorový prostor s operacemi (x + U) + (y + U) = (x + y) + U, 0 + U = U (neutrální prvek), (x + U) = ( x) + U, λ(x+u) = (λx)+u, x,y V, λ K. Definice Bud (R,+,0,, ) okruh a I podokruh okruhu R. Potom se I nazývá - levý ideál okruhu R : r R : ri := {ri i I} I, - pravý ideál okruhu R : r R : Ir := {ir i I} I, - ideál okruhu R (formálně: I R) : r R : ri I Ir I. Příklad(y) ) {0} a R jsou vždy ideály okruhu R, tak zvané triviální ideály. 2) V (Z,+,0,, ) je {nk k Z}, n N 0, ideálem. Tím jsou vyčerpány všechny ideály v Z. Lemma Bud (R,+,0,,,1) okruh s jednotkovým prvkem a I ideál okruhu R. Potom platí: 1 I I = R. Důkaz. Je triviální. Věta Každé těleso má pouze triviální ideály. Důkaz. Bud I ideál tělesa (K,+,0,,,1) a I {0}. Potom existuje x I, x 0. Protože 1 = x 1 x x 1 I I, platí I = K. Věta Bud (R,+,0,,,1) komutativní okruh s jednotkovým prvkem, který má pouze triviální ideály. Potom je R pole nebo R = {0}. Důkaz. x R, x 0 xr = {xr r R} je ideál okruhu R (analogicky k Z), kde x = x1 xr xr {0} xr = R r R : 1 = xr x má inverzní prvek. Důsledek Komutativní okruh R {0} s jednotkovým prvkem je pole R má pouze triviální ideály. Věta Bud (R,+,0,, ) okruh. a) Je-li π kongruence na R, potom je I := [0] π ideál okruhu R, a platí: R/π = R/I = {x+i x R}. b) Je-li I ideál okruhu R a π binární relace na R definovaná vztahem xπy : y x I, x,y R, potom je π kongruence na R a [0] π = I. 26

27 c) π [0] π definuje bijektivní zobrazení množiny všech kongruencí na R na množinu všech ideálů okruhu R. Inverzní zobrazení je dáno vztahem I π, kde π je kongruence definovaná v b). Důkaz. a) i I r R iπ0 rπr irπ0r = 0 riπr0 = 0 ir,ri I. b) x 1 πy 1 x 2 πy 2 y 1 = x 1 + i 1 y 2 = x 2 + i 2, i 1,i 2 I y 1 y 2 = x 1 x 2 + i, kde i = x 1 i 2 +i 1 x 2 +i 1 i 2 I (I je ideál) x 1 x 2 πy 1 y 2. c) π [0] π = I π, I π [0] π = I (analogicky k odpovídajícímu důkazu pro normální podgrupy). Je-li I ideál okruhu R, potom je faktorová algebra (R/I,+,I,, ) okruhem a nazývá se faktorový okruh nebo okruh zbytkových tříd okruhu R modulo I. Operace v R/I jsou: (x+ I) + (y + I) = (x + y) + I (je identická se součtem A + B = {a + b a A, b B}), (x+i)(y+i) = xy+i (není identická se součinem AB = {ab a A, b B}), (x+i) = ( x)+i, 0+I = I je nulový prvek. Příklad(y) Necht Z n = Z/I, I = {kn k Z}. Pak y x I k N : y x = kn x y mod n. Tedy zadaný ideál I odpovídá relaci modn, což zapíšeme jako I =: (n). Poznámka Okruh R je prostý R má pouze triviální kongruence R má pouze triviální ideály {0} =: (0) a R. Věta Komutativní okruh R {0} s jednotkovým prvkem je prostý právě tehdy, když je pole. Příklad(y) Každý okruh matic M n (K) nad polem K je prostý (Cvičení). 2.6 Přímé součiny algeber Definice Bud te A k = (A k,(ω (k) i ) i I ), k K, algebry téhož typu (n i ) i I a A := k K A k = {(a k ) k K a k A k } kartézský součin všech množin A k. Pro všechna i I bud operace ω i na A definována vztahem: ω i (a (1) k ) k K...(a (n i) k ) k K := (ω (k) i a (1) k...a (n i) k ) }{{} k K pro n i > 0, A k ω i := (ω (k) i ) k K pro n i = 0. Algebra (A,(ω i ) i I ) se nazývá přímý součin algeber A k a značí se k K A k. Příklad(y) Necht K = {1,2}, A 1 = (A 1,,e, 1 ), A 2 = (A 2,+,0, ) jsou grupy. Potom se v A 1 A 2 = (A 1 A 2,,(e,0), ) počítá následujícím způsobem: (a 1,a 2 ) (b 1,b 2 ) = (a 1 b 1,a 2 +b 2 ), (a 1,a 2 ) = (a 1 1, a 2 ). Platí: A 1 A 2 je grupa. Asociativní zákon: ((a 1,a 2 ) (b 1,b 2 )) (c 1,c 2 ) = (a 1 b 1 c 1,a 2 +b 2 +c 2 ) = (a 1,a 2 ) ((b 1,b 2 ) (c 1,c 2 )); (e,0) je neutrální prvek: (e,0) (a 1,a 2 ) = (ea 1,0+a 2 ) = (a 1,a 2 ) = (a 1 e,a 2 +0) = (a 1,a 2 ) (e,0); (a 1,a 2 ) je inverzní prvek k (a 1,a 2 ): (a 1,a 2 ) (a 1,a 2 ) = (a 1,a 2 ) (a 1 1, a 2 ) = (a 1 a 1 1,a 2 + ( a 2 )) = (e,0), analogicky (a 1,a 2 ) (a 1,a 2 ) = (e,0). Věta Pokud platí při vhodných termech t 1,t 2 zákon tvaru x 1,...,x n : t 1 (x 1,...,x n ) = t 2 (x 1,...,x n ) ve všech algebrách A k, k K, potom platí také v k K A k. 27

28 Důkaz. Indukcí podle slžitosti termů t 1,t 2. Důsledek Přímé součiny pologrup (grup, vektorových prostorů, okruhů, Booleových algeber) jsou opět pologrupy (grupy, vektorové prostory, okruhy, Booleovy algebry). Pozor! Přímý součin (alespoň dvou) oborů integrity není nikdy obor integrity, nebot (0, 1) (1,0) = (0,0). (Všimněte si: 0 1.) Poznámka Přímý součin k K A k je až na izomorfizmus a) komutativní, tj. nezávislý na pořadí činitelů, např.: A 1 A 2 = A2 A 1, b) asociativní, tj. je možno jej libovolně uzávorkovat, např.: A 1 A 2 A 3 = (A1 A 2 ) A 3 = A1 (A 2 A 3 ). V následujícím textu symbolem C n označíme cyklickou grupu řádu n. Věta Grupa C n C m je cyklická NSD(m,n) = 1. Důkaz. Bud C n = x, C m = y. (nepřímo):nsd(n,m) > 1 k := NSN(n,m) < nm(nebot NSN(n,m) = nm/nsd(n,m)) a (x i,y j ) k = (x ki,y kj ) = (e,e) (protože n ki a m kj) o(x i,y j ) k < nm řád všech prvků množiny C n C m je menší než nm = C n C m C n C m není cyklická. : Ukážeme, že C n C m = (x,y). Máme (x,y) t = (e,e) x t = e y t = e n t m t NSN(n,m) = nm t (jelikož NSD(n,m) = 1). Tedy nm o(x,y). Na druhé straně platí (x,y) nm = (x nm,y nm ) = ((x n ) m,(y m ) n ) = (e,e), takže o(x,y) mn. Proto o(x,y) = nm. Důsledek Je-li n = p e 1 1 p e k k rozklad na prvočinitele čísla n N, potom platí C n = C e p 1 1 C e p k. k Věta2.87. (Hlavnívětaokonečněgenerovanýchabelovskýchgrupách)Je-liG = x 1,...,x m abelovská grupa generovaná prvky x 1,...,x m, potom platí: G = C k C n1 C nr, přičemž k 0 (C 0 := {e}), n i N, r 0. Přitom platí: G je konečná k = 0. (C označuje nekonečnou cyklickou grupu.) Důkaz této věty zde neuvádíme. Lze jej nalézt v mnoha učebnicích o algebře a teorii grup. Příklad(y) ) Všechny abelovské grupy s 12 prvky jsou až na izomorfizmus dány grupami C 12 ( = C 3 C 4 ) a C 2 C 6 ( = C 2 C 2 C 3 ). 2) Všechny abelovské grupy s 8 prvky jsou až na izomorfizmus dány grupami C 8, C 2 C 4 a C 2 C 2 C 2. 28

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

ÚVOD DO ARITMETIKY Michal Botur

ÚVOD DO ARITMETIKY Michal Botur ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy. 1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny

Bardziej szczegółowo

02GR - Odmaturuj z Grup a Reprezentací

02GR - Odmaturuj z Grup a Reprezentací 02GR - Odmaturuj z Grup a Reprezentací podle přednášky doc. Ing. Goce Chadzitaskose, CSc 27. června 2019 Obsah 1 Grupy 4 1.1 Algebraický koncept................................ 4 1.2 Vlastnosti grup...................................

Bardziej szczegółowo

(13) Fourierovy řady

(13) Fourierovy řady (13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx

Bardziej szczegółowo

Nekomutativní Gröbnerovy báze

Nekomutativní Gröbnerovy báze Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace) Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Lukáš Perůtka Hledání optimálních strategií číselného síta Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Aleš Drápal, CSc.,

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

(A B) ij = k. (A) ik (B) jk.

(A B) ij = k. (A) ik (B) jk. Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!

Bardziej szczegółowo

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný

Bardziej szczegółowo

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ; Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),

Bardziej szczegółowo

6 Dedekindovy řezy (30 bodů)

6 Dedekindovy řezy (30 bodů) Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy 1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52 í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A 1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}

Bardziej szczegółowo

1 Dedekindovy řezy (30 bodů)

1 Dedekindovy řezy (30 bodů) Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7 Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Tvarová optimalizace pro 3D kontaktní problém

Tvarová optimalizace pro 3D kontaktní problém Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Kompaktnost v neklasických logikách

Kompaktnost v neklasických logikách Univerzita Karlova v Praze Filozofická fakulta Katedra logiky Diplomová práce Petra Ivaničová Kompaktnost v neklasických logikách Compactness in non-classical logics Praha, 2010 Vedoucí práce: Prof. RNDr.

Bardziej szczegółowo

NDMI002 Diskrétní matematika

NDMI002 Diskrétní matematika NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Zobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky

Zobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky 12. METRIZACE Poznámky Miroslav Hušek, Pavel Pyrih KMA MFF UK 2009 Jak bylo zmíněno v úvodních kapitolách tohoto textu, axiómy metrik (nebo pseudometrik) se často oslabují, aby bylo možné popsat další

Bardziej szczegółowo

Univerzita Palackého v Olomouci

Univerzita Palackého v Olomouci Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Úvod do Informatiky (FI:IB000)

Úvod do Informatiky (FI:IB000) Fakulta Informatiky Masarykova Univerzita Úvod do Informatiky (FI:IB000) Doc. RNDr. Petr Hliněný, Ph.D. hlineny@fi.muni.cz 15. března 2010 Obsažný a dobře přístupný úvod do nezbytných formálních matematických

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala

Bardziej szczegółowo

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets

Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.

Teorie.   kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje. 8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 6. října 04 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Matematická analýza pro učitele (text je v pracovní verzi)

Matematická analýza pro učitele (text je v pracovní verzi) Matematická analýza pro učitele (text je v pracovní verzi) Martina Šimůnková 6. června 208 2 Obsah Úvod 7. Co je to funkce.......................... 7.2 Co budeme na funkcích zkoumat................. 9.2.

Bardziej szczegółowo

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan

Bardziej szczegółowo

Kombinatorika a komplexní aritmetika

Kombinatorika a komplexní aritmetika a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou

Bardziej szczegółowo

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36 (1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,

Bardziej szczegółowo

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny. MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:

Bardziej szczegółowo

Mendelova univerzita v Brně user.mendelu.cz/marik

Mendelova univerzita v Brně user.mendelu.cz/marik INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30

Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30 Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert

Bardziej szczegółowo

Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20

Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20 Lineární kódy, část 1 Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 7.1.2016: Lineární kódy, část 1 1/20 Dnešní přednáška 1 Základní myšlenky

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Petr Beremlijski, Marie Sadowská

Petr Beremlijski, Marie Sadowská Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování

Bardziej szczegółowo

Rozvíjení matematických talentů. kolektiv autorů. Praha 2019

Rozvíjení matematických talentů. kolektiv autorů. Praha 2019 Rozvíjení matematických talentů na středních školách I kolektiv autorů Praha 2019 Publikace byla vydána v rámci Operačního programu Výzkum, vývoj a vzdělávání (OP VVV) a jeho projektu Zvyšování kvality

Bardziej szczegółowo

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.

Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010

Bardziej szczegółowo