Wykład 2: Rachunek lambda

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 2: Rachunek lambda"

Transkrypt

1 Wykład 2: Rachunek lambda Systemy typów, II UWr, października 2010

2 λ-termy zmienne (Var) {x, y, z,...} nieskończony, przeliczalny zbiór zmiennych termy (Term) t ::= x λx.t t t skróty notacyjne λx 1 x 2... x n.t λx 1.λx λx n.t t 1 t 2 t 3... t n (... ((t 1 t 2 ) t 3 )... )t n

3 α-równoważność i konwencja Barendregta λ-abstrakcja λx.t wiąże zmienną x w termie t zmienne wolne FV(x) = {x} FV(λx.t) = FV(t) {x} FV(t 0 t 1 ) = FV(t 0 ) FV(t 1 ) termy t i u są α-równoważne, jeżeli różnią się wyłącznie nazwami zmiennych związanych α-równoważność jest relacją równoważności utożsamiamy α-równoważne termy konwencja Barendregta zakładamy, że zmienne wolne są różne od zmiennych związanych w rozważanych termach (zmienne związane można zawsze odpowiednio przemianować)

4 Podstawienie x{s/x} = s y{s/x} = y x y (λy.t){s/x} = λy.t{s/x} x y, y FV(s) (t 0 t 1 ){s/x} = t 0 {s/x} t 1 {s/x} implementując podstawienie trzeba przemianować zmienne związane w termie, w którym wykonuje się podstawienie na świeże zmienne

5 β-redukcja relacja β-redukcji (λx.t) s β t{s/x} t β t λx.t β λx.t t β t t s β t s s β s t s β t s (λx.t) s β-redex t jest w postaci normalnej, jeżeli nie istnieje s taki, że t β s

6 β-redukcja, c.d. relacja β wielokrokowej β-redukcji przechodnio-zwrotne domknięcie β relacja = β β-równości przechodnio-zwrotno-symetryczne domknięcie β Twierdzenie (Churcha-Rossera) Jeżeli t β r i t β s, to istnieje u taki, że r β u i s β u. (Jeżeli r = β s, to istnieje u taki, że r β u i s β u.) Wniosek Każdy term t ma co najwyżej jedną postać normalną u (tj. taką, że t β u). Uwaga Istnieją termy, które nie mają postaci normalnej, np. Ω = ω ω, gdzie ω = λx.x x.

7 Reprezentacja struktur danych w rachunku λ liczby naturalne (numerały Churcha) c n = λs.λz.s (n) (z) gdzie t (0) (s) = s, t (n+1) (s) = t (t (n) (s)) suc = λm.λs.λz.m s (s z) add = λm.λn.λs.λz.m s (n s z) mul = λm.λn.λs.λz.m (n s) z succ c n β c n+1 add c m c n β c m+n mul c m c n β c m n

8 Reprezentacja struktur danych w rachunku λ, c.d. wartości logiczne pary, listy, drzewa, etc. rekursja true = λx.λy.x false = λx.λy.y cond = λb.λx.λy.b x y cond true t s β t cond false t s β s Y = λf.(λx.f (x x)) (λx.f (x x)) t (Y t) = β Y t

9 Strategie redukcji normalizacja postać normalna v ::= λx.v x v 1... v n (n 0) leftmost-outermost (porządek normalny) w każdym kroku wybierany jest najbardziej na lewo położony redeks niezawarty w żadnym redeksie leftmost-innermost (porządek aplikatywny) w każdym kroku wybierany jest najbardziej na lewo położony redeks niezawierający żadnego redeksu Twierdzenie Jeżeli term ma postać normalną, to redukcja w porządku normalnym ją znajdzie, a redukcja w porządku aplikatywnym niekoniecznie.

10 Ewaluacja w porządku normalnym (call by name) słaba czołowa postać normalna v ::= λx.t x t 1... t n (n 0) relacja redukcji w porządku normalnym n (λx.t) s n t{s/x} t n t t s n t s relacja ewaluacji n w stylu semantyki naturalnej x n x t n λx.u u{s/x} n v t s n v t n v t s n v s λx.t n λx.t (v λx.u)

11 Ewaluacja w porządku normalnym (call by name), c.d. Twierdzenie t n v wtw t n v. Dowód Indukcja po długości ciągu redukcji t n v. Indukcja po wyprowadzeniu t n v.

12 Maszyna Krivine a (wariant z podstawieniem) reprezentacja termu (t, t 1 : : t n ) reprezentuje term t t 1... t n przejścia maszyny konfiguracja początkowa (λx.t, s : s) n (t{s/x}, s) (t 0 t 1, s) n (t 0, t 1 : s) (t, ɛ) konfiguracje końcowe (λx.t, ɛ) (x, t) Twierdzenie t n v wtw (t, ɛ) n (v 0, t 1 : : t n ) gdzie v = v 0 t 1... t n.

13 Ewaluacja w porządku aplikatywnym (call by value) słaba postać normalna v ::= λx.t x v 1... v n (n 0) relacja redukcji w porządku aplikatywnym v (λx.t) v v t{v/x} t v t t s v t s s v s v s v v s relacja ewaluacji v w stylu semantyki naturalnej x v x λx.t v λx.t t v v s v w t s v v w t v λx.u s v w u{w/x} v v t s v v (v λx.u)

14 Maszyna CK stos przejścia maszyny s ::= ɛ arg(t) : s fun(v) : s (x, s) v (s, x) (λx.t, s) v (s, λx.t) (t 0 t 1, s) v (t 0, arg(t 1 ) : s) (arg(t 1 ) : s, v 0 ) v (t 1, fun(v 0 ) : s) (fun(λx.t) : s, v 1 ) v (t{v 1 /x}, s) (fun(x v 1... v n ) : s, v) v (s, x v 1... v n v) konfiguracja początkowa (t, ɛ) konfiguracja końcowe (ɛ, v)

15 Indeksy de Bruijna Cel reprezentacja termów, która nie wymaga przemianowania zmiennych przy podstawieniu α-równoważne termy są identyczne Rozwiązanie zmienne reprezentowane za pomocą liczb naturalnych (indeksy de Bruijna) indeks de Bruijna określa odległość (liczba dzielących je λ) zmiennej od wiążącej ją lambdy przykłady λx.x λ.0 λx.λy.x (y x) λ.λ.1 (0 1)

16 Indeksy de Bruijna, c.d. termy t ::= n λ.t t t termy otwarte mają sens w pewnym kontekście Γ = x n, x n 1,..., x 1, x 0 wiążącym nazwę x i z indeksem i przykład (Γ = c, b, a) a (b c) 0 (1 2) λx.a x λ.1 0 λx.λy.c λ.λ.4

17 Indeksy de Bruijna, c.d. podstawienie przesunięcie indeksów k{s/k} = s k{s/j} = k, k j (λ.t){s/j} = λ.t{ 1 0 (s)/j + 1} (t 0 t 1 ){s/j} = t 0 {s/j} t 1 {s/j} d c (k) = k, k < c d c (k) = k + d, k c d c (λ.t) = λ. d c+1 (t) d c (t 0 t 1 ) = d c (t 0 ) d c (t 1 ) β-redukcja (λ.t) s β 1 0 (t{ 1 0 (s)/0})

18 Modelowy język funkcyjny (CBV) składnia t ::= x λx.t t t 0 suc t case t of 0 t suc x t fix x.t syntaktyczny cukier let x = t 1 in t 2 (λx.t 2 ) t 1 letrec x = t 1 in t 2 let x = fix x.t 1 in t 2 program = zamknięty term przykład programu letrec add = λm.λn.case m of 0 n suc k add k (suc n) in add 2 3

19 Modelowy język funkcyjny (CBV), c.d. wartości semantyka programów (λx.t) v v t{v/x} v ::= nv λx.t nv ::= 0 suc nv t v t t s v t s t v t suc t v suc t s v s v s v v s case 0 of 0 t suc x s v t case (suc nv) of 0 t suc x s v s{nv/x} t v t case t of 0 r suc x s v case t of 0 r suc x s fix x.t v t{fix x.t/x}

Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda

Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 13. Siła wyrazu rachunku lambda 1 Wstęp Wartości logiczne Liczby naturalne

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

Programowanie. Lista zadań nr 15. Na ćwiczenia 11, 19 i 23 czerwca 2008

Programowanie. Lista zadań nr 15. Na ćwiczenia 11, 19 i 23 czerwca 2008 Programowanie Lista zadań nr 15 Na ćwiczenia 11, 19 i 23 czerwca 2008 Zadanie 1. Pokaż, że w systemie z polimorfizmem parametrycznym można napisać program P n rozmiaru O(n), którego typ ma rozmiar 2 2Ω(n).

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Rachunek lambda CBN i CBV

Rachunek lambda CBN i CBV P. Urzyczyn: Materia ly do wyk ladu z semantyki 1 Rachunek lambda CBN i CBV Rachunek lambda czesto uważamy za abstrakcyjny jezyk programowania funkcyjnego. Jednak ewaluacja wyrażenia w rzeczywistych jezykach

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ

Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 4. Siła wyrazu rachunku λ 1 Wstęp Wartości

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna Język JAVA podstawy Wykład 3, część 3 1 Język JAVA podstawy Plan wykładu: 1. Konstrukcja kodu programów w Javie 2. Identyfikatory, zmienne 3. Typy danych 4. Operatory, instrukcje sterujące instrukcja warunkowe,

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Programowanie komputerowe. Zajęcia 4

Programowanie komputerowe. Zajęcia 4 Programowanie komputerowe Zajęcia 4 Typ logiczny Wartości logiczne są reprezentowane przez typ bool. Typ bool posiada tylko dwie wartości: true i false. Zamiast wartości logicznych można używać wartości

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 3

Semantyka i Weryfikacja Programów - Laboratorium 3 Semantyka i Weryfikacja Programów - Laboratorium 3 Modelowanie układów mikroprocesorowych - część II Wykonywanie całego programu Cały program wykonywany jest przez funkcję intpprog. Jedynym argumentem

Bardziej szczegółowo

Common Lisp - funkcje i zmienne

Common Lisp - funkcje i zmienne Instytut Informatyki Uniwersytetu Wrocławskiego 27 października 2010 Plan prezentacji 1 Funkcje 2 Plan prezentacji Funkcje 1 Funkcje Ogólna postać Sposoby podawania parametrów 2 Krótkie przypomnienie Funkcje

Bardziej szczegółowo

Formalizacja podstawowych pojęć rachunku lambda

Formalizacja podstawowych pojęć rachunku lambda Formalizacja podstawowych pojęć rachunku lambda Antoni Kościelski 1 Zmienne Zbiór zmiennych będziemy oznaczać literą V. Zakładamy, że jest to zbiór nieskończony (przeliczalny). Chcemy mieć do dyspozycji

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Programowanie funkcyjne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XIV Jesień 2013 1 / 25 Paradygmaty programowania Programowanie imperatywne Program

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone

Bardziej szczegółowo

Lista 3 Modele algorytmiczne

Lista 3 Modele algorytmiczne 1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 3 Modele algorytmiczne Współczesne systemy informatyczne to skomplikowane

Bardziej szczegółowo

CsPL, system do weryfikacji bezpieczeństwa programów p.1/20

CsPL, system do weryfikacji bezpieczeństwa programów p.1/20 CsL, system do weryfikacji bezpieczeństwa programów XVII FI, Karpacz 003 Wiktor Zychla, Wojciech omanik Uniwersytet Wrocławski Instytut Informatyki 13 grudnia 003 CsL, system do weryfikacji bezpieczeństwa

Bardziej szczegółowo

Programowanie funkcyjne Wykład 14. Rachunek λ z typami prostymi

Programowanie funkcyjne Wykład 14. Rachunek λ z typami prostymi Programowanie funkcyjne Wykład 14. Rachunek λ z typami prostymi Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 14. Rachunek λ z typami prostymi 1 Dowody konstruktywne Dedukcja naturalna

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Programowanie komputerów

Programowanie komputerów Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Zależności funkcyjne

Zależności funkcyjne Zależności funkcyjne Plan wykładu Pojęcie zależności funkcyjnej Dopełnienie zbioru zależności funkcyjnych Postać minimalna zbioru zależności funkcyjnych Domknięcie atrybutu relacji względem zależności

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Literatura David Harel. Rzecz o istocie informatyki. Algorytmika. Wydawnictwa Naukowo-Techniczne. Wydanie trzecie. Seria: Klasyka informatyki. Warszawa 2000. Niklaus Wirth. Algorytmy

Bardziej szczegółowo

λ parametry. wartość funkcji suma = λ x y. x + y kwadrat = λ x. x * x K.M. Ocetkiewicz, 2008 WETI, PG 2 K.M. Ocetkiewicz, 2008 WETI, PG 3

λ parametry. wartość funkcji suma = λ x y. x + y kwadrat = λ x. x * x K.M. Ocetkiewicz, 2008 WETI, PG 2 K.M. Ocetkiewicz, 2008 WETI, PG 3 Organizacja przedmiotu Języki programowania (Programming language concepts) Krzysztof M. Ocetkiewicz pok. 205 email: Krzysztof.Ocetkiewicz@eti.pg.gda.pl konsultacje: czwartek 10:15-11.00, 13:15-14:00 projekt:

Bardziej szczegółowo

3. Wykład 3: Dowody indukcyjne, strategie dowodowe Dowody indukcyjne. Dotychczas zobaczyliśmy w jaki sposób można specyfikować definicje

3. Wykład 3: Dowody indukcyjne, strategie dowodowe Dowody indukcyjne. Dotychczas zobaczyliśmy w jaki sposób można specyfikować definicje 3. Wykład 3: Dowody indukcyjne, strategie dowodowe. 3.1. Dowody indukcyjne. Dotychczas zobaczyliśmy w jaki sposób można specyfikować definicje indukcyjne kategorii syntaktycznych lub osądów, czy też w

Bardziej szczegółowo

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wstęp do programowania. Różne różności

Wstęp do programowania. Różne różności Wstęp do programowania Różne różności Typy danych Typ danych określa dwie rzeczy: Jak wartości danego typu są określane w pamięci Jakie operacje są dozwolone na obiektach danego typu 2 Rodzaje typów Proste

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Wyuczalność w teorii modeli

Wyuczalność w teorii modeli Wyuczalność w teorii modeli Nina Gierasimczuk Instytut Filozofii UW & Institute for Logic, Language, and Computation UvA Forum Kognitywistyczne 26 IV 2008 Nina Gierasimczuk (IF UW, ILLC UvA) Wyuczalność

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zestaw 1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb)!!!

Zestaw 1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb)!!! Zestaw 1 Zadeklarować niezawężony typ tablicowy T przechowujący wartości całkowite dodatnie. Napisać: Funkcję IlePodzielnych zwracającą wartość całkowitą będącą liczbą elementów tablicy typu T podanej

Bardziej szczegółowo

Elementy języka Scheme

Elementy języka Scheme Elementy języka Scheme Historia języka Lisp Historia języka Lisp Wyrażenia i ewaluacja wyrażeń Identyfikatory i wyrażenie let Wyrażenia lambda Definicje globalne Wyrażenia warunkowe Przypisanie Kontynuacje

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Projektowanie relacyjnych baz danych

Projektowanie relacyjnych baz danych BAZY DANYCH wykład 7 Projektowanie relacyjnych baz danych Dr hab. Sławomir Zadrożny, prof. PR Zależności funkcyjne Niech X i Y oznaczają zbiory atrybutów relacji R Powiemy, że dla relacji R obowiązuje

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny

Bardziej szczegółowo

Programowanie Funkcyjne. Marcin Kubica Świder,

Programowanie Funkcyjne. Marcin Kubica Świder, Programowanie Funkcyjne Marcin Kubica Świder, 28-04-2015 Czym jest programowanie funkcyjne? Obliczalne pojęcia matematyczne. Definicje stałych i funkcji i relacji. Wszystkie definicje są konstruktywne,

Bardziej szczegółowo

dodatkowe operacje dla kopca binarnego: typu min oraz typu max:

dodatkowe operacje dla kopca binarnego: typu min oraz typu max: ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Programowanie 2009 Programming 2009

Programowanie 2009 Programming 2009 Programowanie 2009 Programming 2009 Lista zadań nr 14 Problem set no. 14 Na zajęcia 9 10 czerwca 2009 Due June 10, 2009 W poniższych zadaniach rozważamy system typów z polimorfizmem parametrycznym zadany

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Architektura komputerów. Asembler procesorów rodziny x86

Architektura komputerów. Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych

Bardziej szczegółowo

Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk

Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk Wykład nr 3 27.10.2014 Procesory identyczne, zadania niezależne, podzielne: P pmtn C max Algorytm McNaughtona 1 Wylicz optymalną długość C max = max{ j=1,...,n p j/m, max j=1,...,n p j }, 2 Szereguj kolejno

Bardziej szczegółowo

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli

Bardziej szczegółowo

Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40

Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40 Praktyczne metody weryfikacji Wykład 9: Weryfikacja ograniczona. p.1/40 Symboliczna weryfikacja modelowa (SMC) model kodowanie boolowskie QBF implementacja OBDD weryfikacja modelowa = operacje na OBDDs.

Bardziej szczegółowo

PARADYGMATY I JĘZYKI PROGRAMOWANIA. Programowanie funkcyjne (w- 9)

PARADYGMATY I JĘZYKI PROGRAMOWANIA. Programowanie funkcyjne (w- 9) PARADYGMATY I JĘZYKI PROGRAMOWANIA Programowanie funkcyjne () Zagadnienia 2 Wstęp Rachunek lambda i programowanie funkcjonalne (Podstawa: An introduc/on to func/onal programming through lambda calculus.

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Wykład 5 Podstawowe techniki programownia w przykładach Janusz Szwabiński Plan wykładu: Metoda babilońska wyliczania pierwiastka Liczby pierwsze i sito Eratostenesa Metoda bisekcji

Bardziej szczegółowo

Rachunek lambda, zima

Rachunek lambda, zima Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli

Bardziej szczegółowo

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Arytmetyka pierwszego rz du

Arytmetyka pierwszego rz du Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.

Bardziej szczegółowo

Równowano modeli oblicze

Równowano modeli oblicze Równowano modeli oblicze Interpretacja rachunku 1 2 Twierdzenie Gödla o pełnoci Interpretacja jzyka FOL W 1931 K. Gödel udowodnił, e Jeeli formuła jest prawdziwa, to istnieje dowód tej formuły. Problem

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Programowanie funkcyjne Wykład 12. Funkcje rekurencyjne i rachunek lambda

Programowanie funkcyjne Wykład 12. Funkcje rekurencyjne i rachunek lambda Instytut Informatyki Programowanie funkcyjne Wykład 12. Funkcje rekurencyjne i rachunek lambda Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 12. Funkcje rekurencyjne i rachunek lambda

Bardziej szczegółowo

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Kongruencje pierwsze kroki

Kongruencje pierwsze kroki Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Typy, klasy typów, składnie w funkcji

Typy, klasy typów, składnie w funkcji Typy, klasy typów, składnie w funkcji Typy w Haskell Każde wyrażenie w Haskell posiada zdefiniowany typ. Dzięki temu już na etapie kompilacji kodu następuje sprawdzenie poprawności kodu i zabezpiecza nas

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo