Część IV. Elektryczność i Magnetyzm

Wielkość: px
Rozpocząć pokaz od strony:

Download "Część IV. Elektryczność i Magnetyzm"

Transkrypt

1 Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie Początki nauki o elektryczności sięgają czasów Talesa z Miletu (VI w. p.n.e.), który obserwował przyciąganie źdźbła trawy przez potarty bursztyn. Wykład będzie dotyczył doświadczalnego opisu zjawisk elektromagnetycznych. Zjawiskom tym towarzyszą siły. Siły elektromagnetyczne są jednymi z czterech podstawowych sił w przyrodzie. Bursztyn zwany: jantar, amber (z łac. sucinum, czasem także elektrum z gr. ἤλεκτρον - elektron) 1

2 10.1. Ładunek elektryczny Część IV. Elektryczność i Magnetyzm Atomy, cząsteczki zbudowane są z elektronów, protonów i neutronów; dwa ostatnie zwane nukleonami, tworzą jądro atomowe. Elektrony, protony oraz neutrony posiadają następujące ładunki elektryczne: q q q e p n ( ) x10 ( ) x x10 21 x q e [ C] [ C] (1.1) Ładunki protonu i elektronu są sobie równe, w granicy błędu pomiarowego. Dla wygody definiujemy ładunek elementarny (ujemny) e q e q p : e x10 19 [ C] Każdy ładunek elektryczny, z którym mamy do czynienia jest całkowitą wielokrotnością ładunku elementarnego. (1.2) Elementarne ładunki: e - : elektrony -e p + : protony +e n : neutrony 0 e + : pozytrony +e 2

3 Ładunek elektryczny Kwantyzacja ładunku elektrycznego Obecna idea: istnieje elektryczny ładunek elementarny e i każdy eksperymentalnie wykryty ładunek elektryczny jest wielokrotnością jego wielkości: q = ne, n = 0, 1, 2, 3,, (1.3) e = C C [ładunek elektryczny, tzw. ładunek elementarny]. 1: Ładunek elementarny e jest stałą naturalną = stałą przyrody. 2: Jeżeli wielkość fizyczna, np. ładunek, istnieje tylko w dyskretnych paczkach a nie w postaci wartości zmieniającej się w sposób ciągły, mówimy, że dana wielkość jest skwantowana. Mechanika Kwantowa 3: W obiektach materialnych istnieją ogromne ilości dodatnich i ujemnych ładunków, np g miedzi zawiera C dodatnich i ujemnych ładunków, więc ładunek ogólny takiego obiektu jest zbliżony do neutralnego. 3

4 Część IV. Elektromagnetyzm Ładunek elektryczny jest zachowany 4

5 Ładunek elektryczny Podział materiałów ze względu na właściwości elektryczne Przewodniki Izolatory Półprzewodniki Nadprzewodniki Ładunki elektryczne (tj. elektrony przewodnictwa), pomimo pewnego oporu elektrycznego, mogą poruszać się swobodnie w całym materiale. W większości przypadków ładunki elektryczne są nieruchome. Materiały (np. krzem, german) pośrednie pomiędzy przewodnikami a izolatorami posiadają specyficzne właściwości dzięki pasmom energetycznym w których elektrony (i dziury) mogą się poruszać. Materiały które mogą przenosić prąd elektryczny bez oporu; np. niektóre metale i stopy = nadprzewodniki konwencjonalne (w niskich temperaturach) lub nowe wysokotemperaturowe Gęstość elektronów w materiałach: Przewodniki: elektronów przewodnictwa na cm 3. Półprzewodniki: na cm 3. Izolatory: <1 na cm 3. 5

6 Część IV. Elektryczność i Magnetyzm Cztery oddziaływania fundamentalne 1) Silne- (odpowiedzialne za wiązanie kwarków w nukleony oraz nukleonów w jądra atomowe) 2) Elektromagnetyczne (odpowiedzialne za siły działające między cząstkami posiadającymi ładunek elektryczny ) 3) Słabe- (odpowiedzialne za rozpad niektórych cząstek, np. neutronu ) 4) Grawitacyjne- (odpowiedzialne za przyciąganie między Cząstkami posiadającymi masę). Rys. Fundamentalne oddziaływania: siła, zasięg, gdzie dominują. Elektromagnetyzm, jedno z fundamentalnych oddziaływań występujących w przyrodzie. 6

7 Nośniki oddziaływań (cząstki przenoszące oddziaływanie): Tab. Własności cząstek pośredniczących Część IV. Elektryczność i Magnetyzm 7

8 10.4. PRAWO COULOMBA Ładunek elektryczny Charles Augustin Coulomb ( ) zmierzył (w 1785) w sposób ilościowy przyciąganie i odpychanie elektryczne pomiędzy dwoma ładunkami. Odkrył on, że F k q r q 1 4 o r q r q k q r q (4.1) Fot. źródło :jergym.hiedu.cz Rys. Siły działające między dwoma ładunkami. gdzie: k- stała elektrostatyczna, historycznie jest wyrażona przez przenikalność elektryczną o - przenikalność elektryczna próżni, wtedy: o k C / N m 1 4 o N m r - przenikalność elektryczna ośrodka. 2 / C 2 8

9 Doświadczenie Coulomba Aparat użyty przez Coulomba: W układzie SI jednostką ładunku elektrycznego jest kulomb (C): 1C ilość ładunku przenoszona przez przekrój poprzeczny przewodu w czasie 1sekundy przy prądzie płynącym w przewodzie o wartości 1 ampera. Eksperymentalna definicja 1 ampera (A): I = dq/dt (4.2) dq -ładunek w kulombach (C), przenoszony w czasie dt (w sekundach). Dlatego dwa 1 kulombowe ładunki umieszczone w odległości 1m od siebie odpychają się z siłą N. Rys. źródło: 9

10 Ładunek elektryczny Porównanie oddziaływań: elektrostatycznego z grawitacyjnym Dla porównania przypomnijmy prawo ciążenia: F G M m 2 r rˆ (4.3) Gdzie, stała grawitacji G jest równa: G 2-11 m N kg (4.4) Iloraz tych stałych proporcjonalności w prawie Coulomba i prawie ciążenia wynosi: / G (4.5) Jednostki pomijamy, by dać pojęcie o skali tych wielkości: WNIOSEK: Analizując oddziaływanie elektrostatyczne (elektryczne) ładunków, oddziaływanie grawitacyjne mas tych ładunków może być pominięte (patrz wyżej na rysunek o czterech oddziaływaniach). 10

11 Ładunek elektryczny Prawo Coulomba w postaci wektorowej: F 12 r 12 rˆ 12 : siła elektrostatyczna działająca na cząstkę 1 wywierana przez cząstkę 2. : wektor pozycyjny, określający pozycję cząstki 1 względem cząstki 2. r12 r - (kierunkowy wektor jednostkowy) 12 F 1 q q rˆ o r przenikalność elektryczna próżni: o C / N m W ośrodku różnym od próżni musimy uwzględnić przenikalność elektryczną ośrodka, stąd: (4.6) 0 r r - względna przenikalność elektryczna ośrodka (stała bezwymiarowa). 11

12 Część IV. Elektryczność i Magnetyzm Tabela. Wartości przenikalności elektrycznej dla kilku wybranych materiałów Należy pamiętać, o związku między elektrycznymi i magnetycznym własnościami próżni a prędkością światła: 1 c (4.7) gdzie ε 0 to podatność elektryczna, μ 0 podatność magnetyczna próżni. 0 WNIOSEK: Oddziaływanie elektryczne ładunków zależy od ośrodka, w którym ładunki się znajdują. Ośrodek wpływa na oddziaływanie, ale też pole elektryczne oddziałuje na ośrodek (polaryzacja elektryczna ośrodka) 0 12

13 Elektromagnetyzm POJĘCIE POLA ELEKTRYCZNEGO Ładunek oddziałuje z polem wytworzonym przez drugi ładunek a nie oddziałują bezpośrednio ze sobą. definiuje się jako siłę na jednostkę ładunku: Własności pola elektrycznego (5.1) E F q N C 13

14 Własności pola elektrycznego c.d. Elektromagnetyzm (5.2) 14

15 Własności pola elektrycznego c.d. (5) Natężenie pola elektrycznego spełnia prawo odwrotności kwadratu odległości: 1 E 2 r Pole elektryczne nie jest modelem abstrakcyjnym. Jest to twór fizyczny jak najbardziej realny. 15

16 10.6. Linie pola elektrycznego Rys. Linie natężenia pola elektrycznego wokół ładunku Q 16

17 LINIE POLA ELEKTRYCZNEGO- PRZYKŁADY 17

18 Pole elektryczne Pole elektryczne układu ładunków punktowych (5.3) (5.4) 18

19 Pole elektryczne (5.5) 19

20 Pole elektryczne Przykład 1 Wykazać, że wartość natężenia pola elektrycznego (E) w punkcie P leżącym na osi X w dużej odległości od dipola (x>>d) wynosi: E( x) qd 3 x 20

21 Rozwiązanie P1. Mamy wyznaczyć wartość natężenia pola elektrycznego (E) w punkcie P leżącym na osi x. 21

22 (5.6) ( jest 22

23 Pole elektryczne i prawo Gaussa Pole elektryczne od ładunków o rozkładzie ciągłym. (7.1) 23

24 Przykład 1. Naładowany pierścień. Pole elektryczne i prawo Gaussa (7.2) Pierścień jednorodnie naładowany ładunkiem dodatnim. Element różniczkowy ładunku dq zajmuje pewną długość ds i wytwarza pole elektryczne de w punkcie P (rys.). Składowa de wyznaczona wzdłuż osi obrotu pierścienia wynosi dq = λdl de z = de cosθ. dla naładowanego pierścienia E(z) : (7.3) E z qz o( z R ) 3/ 2 (7.4) dl (wyprowadzenie wzoru na tablicy) 24

25 Przykład 2. Naładowany dysk (7.5) (wyprowadzenie wzoru na tablicy): dq dv (7.6) 25

26 Elektryczność 10.8 Indukcja pola elektrycznego oraz przenikalność elektryczna ośrodka. Jak będzie wyglądało pole elektryczne w ośrodku różnym od próżni: w cieczach, gazach, czy ciałach stałych, czyli ośrodkach charakteryzujących się różną od jedności względną przenikalnością elektryczną? Musimy prowadzić nową wielkość. Pole elektryczne definiujemy w takich ośrodkach poprzez wektor indukcji pola elektrycznego D : D gdzie: D wektor indukcji pola elektrycznego, E wektor natężenia pola elektrycznego, - przenikalność elektryczna ośrodka. E C 1 ] [ 2 m (8.1) Przenikalność elektryczną ośrodka definiujemy: 0 r (8.2) 0 gdzie: - przenikalność elektryczna próżni, fundamentalna stała przyrody. Względna przenikalność elektryczna ośrodka r (stała bezwymiarowa), określa ile razy przenikalność danego ośrodka jest większa od przenikalności elektrycznej próżni 26

27 Wnioski: Przenikalność elektryczna ośrodka Elektryczność jest skalarem w ośrodku izotropowym, czyli takim, którego własności elektryczne są takie same, niezależnie od kąta w jakim dokonujemy pomiary. Oznacza to, że w ośrodku izotropowym wektory D i E są do siebie równoległe. W ośrodku anizotropowym, którego własności elektryczne zależą od kąta, w którym dokonuje się pomiarów, a wektory D i E przestają być równoległe. Przykład bryły izotropowej: kula. Przykład bryły anizotropowej: sześcian, ogólnie każda bryła nie będąca kulą (sferą). 27

28 10.9. Strumień pola elektrycznego Pole elektryczne i prawo Gaussa S: E E ds E ds cos (9.1) - kąt zawarty między wektoram E, a wektorem ds normalnym do powierzchni S. Całkowity strumień pola elektrycznego możemy policzyć jako sumę strumieni cząstkowych: E E ds S (9.2) S 28

29 Pole elektryczne i prawo Gaussa Przykład 1. Znajdź wyrażenie na strumień pola elektrycznego przechodzący przez powierzchnię sferyczną (A) w odległości r od środka ładunku punktowego q. Zatem, całkowity strumień przechodzący przez naszą zamkniętą powierzchnię sferyczną wynosi : E q 0 Rys. 29

30 Pole elektryczne i prawo Gaussa Przykład 2. Znajdź wyrażenie na strumień pola elektrycznego przechodzący przez dowolną zamkniętą powierzchnię. Rozważmy kontur o dowolnym Kształcie otaczający kulę. Przeprowadźmy stożek o wierzchołku w q, wycinający z kuli element o powierzchni a, a z konturu element A. Rys. Porównajmy strumienie przez te dwa elementy: Ponieważ każdemu elementowi powierzchni zewnętrznej możemy przypisać element sfery, zatem całkowity strumień jest jednakowy dla obu powierzchni. Wniosek: Strumienie przez oba elementy są sobie równe. 30

31 Prawo Gaussa dla pola elektrycznego Jeżeli będziemy rozważać wiele ładunków zawartych w naszej powierzchni możemy zastosować zasadę superpozycji: natężenie pola elektrycznego od wielu źródeł można przedstawić jako sumę natężeń pola od pojedynczych źródeł. (9.3) PRAWO GAUSSA dla pola elektrycznego: 0 E ds q (10.1) S lub Rys. źródło: Strumień pola elektrycznego przez dowolną powierzchni ę zamkniętą jest równy całkowitemu ładunkowi zawartemu wewnątrz tej powierzchni : 31

32 Pole elektryczne i prawo Gaussa Przykład 1. Kuliste rozkłady ładunków - jednorodnie naładowana kula Pole elektryczne na powierzchni Gaussa jest równe: (stosunek objętości kuli o promieniu r do objętości kuli o promieniu R). Ostatecznie otrzymujemy dla r < R : lub Rys. Zależność pola E od odległości od środka naładowanej kuli o promieniu R 32

33 Pole elektryczne i prawo Gaussa Prawo Gaussa a prawo Coulomba Wykazać, że prawo Coulomba wynika z prawa Gaussa. Przyjąć.,że E =const. L Z prawa Gaussa strumień przechodzących przez sferę o promieniu r, otaczającą ładunek Q (rys.) : E ds Q (10.2) 0 S Obliczymy teraz lewą stronę powyższego równania, mamy: F 4 r q 2 0 E ds 0E ds 0E r 0 4 S S Przyrównując powyższe wyrażenie z prawą stroną równania (9.2), otrzymujemy Prawo Coulomba: F Qq r 2 (10.4) 2 (10.3) 33

34 Potencjał pola elektrostatycznego POTENCJAŁ POLA ELEKTRYCZNEGO Pole elektryczne jest polem wektorowym, ale również polem skalarnym. Pole elektryczne jest polem zachowawczym, tzn. praca wykonana przez siłę elektrostatyczną nie zależy od drogi, lecz od położeń punktu początkowego i końcowego. (11.1) Rys. Pole elektryczne od dipola. Dlatego praca wykonana dla drogi zamkniętej jest równa zero. W F ds q E ds 0 (11.2) Powyższe równanie jest prawdziwe dla każdego pola zachowawczego (np. pole grawitacyjne). Jeżeli pole jest polem zachowawczym, to znaczy, że dla takiego pola istnieje potencjał i energia potencjalna. 34

35 Pole elektryczne r (r) U Energię potencjalną w punkcie, czyli definiujemy jako: U ( r ) r F dr q r E dr q r E dr (11.3) jest to praca wykonaną przez siły zewnętrzne przy przenoszeniu ładunku punktowego q z nieskończoności do punktu r. Przykład. Dla dwóch ładunków punktowych odległych o r, energia potencjalna takiego układu ładunków wynosi: 1 q q U( r) F dr q E dr (11.4) 4 r Praca wykonana przez siły pola przy przesunięciu ładunki z r 1 do r 2 wynosi: r2 r2 W( r1 r2 ) F dr F dr F dr U( r1 ) U( r2 ) r1 r1 i jest równa różnicy energii potencjalnej w tych punktach. U( ) 0 Jeśli ustalimy, że :, to W U ( r 2. ) r r 0 (11.5) (11.6) 35

36 Pole elektryczne ELEMENTY TEORII POLA PODSTAWOWE DEFINICJE: Jeżeli każdemu punktowi pewnego obszaru przyporządkowujemy wartość liczbową, to ten obszar nazywamy polem skalarnym. Pole skalarne przyjmuje nazwę w zależności od sensu fizycznego funkcji. Np. pole gęstości danego ciała, pole temperatur, pole potencjału elektromagnetycznego. Jeżeli każdemu punktowi obszaru przyporządkowujemy wektor, to obszar ten nazywamy polem wektorowym. Pole wektorowe przyjmuje nazwę w zależności od sensu fizycznego wektora. Np. pole prędkości cieczy, pole grawitacyjne, pole elektrostatyczne, magnetyczne. A 36

37 Pole elektryczne Definicja Symbol (nabla*), oznacza wektorowy operator rózniczkowy, zwany operatorem nabla albo Hamiltona. W układzie współrzędnych kartezjańskich ma szczególnie prostą postać: x, y, z lub x i y j z k (11.7) Definicja 2 Gradientem pola skalarnego nazywamy pole wektorowe, określone następująco: grad i x j y k z (11.8) *nabla z semickiego harfa, przypomina staroegipską harfę 37

38 Definicja 3 DYWERGENCJĄ pola wektorowego określone następująco: Pole elektryczne diva A A [ P, Q, R] P x Q y nazywamy pole skalarne, R z. (11.9) Własności dywergencji Niech A, B będą różniczkowalnymi polami wektorowymi,a będzie różniczkowalnym polem skalarnym. Wtedy: 1) 2) div( ka lb) kdiva ldivb, gdzie k, l R; div( A) diva grad A. 38

39 Pole elektryczne OGÓLNA ZALEŻNOŚĆ MIĘDZY SIŁĄ A ENERGIĄ POTENCJALNĄ gradu ( r) U ( r) Przypominam, że wektorowy operator różniczkowy w układzie współrzędnych kartezjańskich ma postać: F, zwany operatorem nabla, x, y, (11.10) z Równanie (11.10) pozwala policzyć siłę działającą na ładunek umieszczony w punkcie o energii potencjalnej U(r). Jeżeli znamy siłę, a chcemy obliczyć energię potencjalną posłużymy się zależnością wynikającą z równania (11.5): U( r1 ) U( r2 ) r r 1 2 F dr (11.11) Równania (11.10 ), (11.11) są słuszne dla każdego pola zachowawczego, np. pola elektrycznego, pola grawitacyjnego. 39

40 Pole elektryczne POTENCJAŁ ELEKTRYCZNY Potencjał V (r) jest to energia potencjalna przypadająca na jednostkowy ładunek: V ( r) U( r) q (11.12) Różnica potencjałów w dwóch punktach jest zatem równa: U V U( r ) U( r ) W( r r ) V ( r ) V ( r ) q q (11.13) i jest nazywana napięciem (U). U3: W układzie SI jednostką napięcia jest 1 V [volt]. 40

41 Pole elektryczne Potencjał a natężenie pola elektrycznego Podstawiając do równania (11.12) definicję energii potencjalnej (równ. 11.3), otrzymany potencjał będzie określony przez zależność: V ( r ) r E dr E dr r (11.14) Powyższe równanie jest równaniem całkowym. Związek między potencjałem a wektorem natężenia pola elektrycznego można również przedstawić w postaci równania różniczkowego: E gradv ( r) V ( r) (11.15) Przykład. Dla ładunku punktowego q potencjał wyniesie: V ( r) E dr 1 r 4 0 q r (11.16) 41

42 Pole elektryczne i prawo Gaussa Związki między wielkościami charakteryzującymi pole elektryczne: Zapamiętaj Powierzchnie ekwipotencjalne powierzchnie stałego potencjału, spełniające równanie V( r ) const. Praca przy przesunięciu ładunku na pow. ekwipotencjalnej= 0! Praca wykonana przy przesunięciu ładunku między różnymi powierzchniami ekwipotencjalnymi jest różna od zera! 42

43 KONIEC 43

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11 Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek

Bardziej szczegółowo

Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11 Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek elektryczny

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Elektrostatyka Elektryczność nas otacza i tworzy...

Elektrostatyka Elektryczność nas otacza i tworzy... Elektrostatyka Elektryczność nas otacza i tworzy... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elektryczność

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka

Wykład FIZYKA II. 1. Elektrostatyka Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Reinhard Kulessa II semestr r. akademickiego 2006/2007 Literatura E.M. Purcell, Berkeley Physics Course, Elektryczność i Magnetyzm David J. Griffiths:, "Podstawy Eelektrodynamiki",

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Wykład 2 Prawo Coulomba i pole elektryczne

Wykład 2 Prawo Coulomba i pole elektryczne Wykład 2 Prawo Coulomba i pole elektryczne (oraz krew kozła i czosnek) Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 1 marca 2017 Maciej J. Mrowiński (IF PW) Wykład 2 1 marca

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

R o z d z i a ł 7 POLE ELEKTRYCZNE

R o z d z i a ł 7 POLE ELEKTRYCZNE R o z d z i a ł 7 POLE ELEKTRYCZNE Zjawiska elektryczne towarzyszyły człowiekowi od samego początku jego pojawienia się. Wyładowania atmosferyczne napawały grozą, zaś zjawiska bioelektryczne i elektryzacja

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1 POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE.

k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. Pokazano na czym polega jedność pola elektrycznego, pola magnetycznego i pola grawitacyjnego. Po raz pierwszy w historii fizyki obiektywnie porównano ze sobą

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo