część matematyczno-przyrodnicza

Wielkość: px
Rozpocząć pokaz od strony:

Download "część matematyczno-przyrodnicza"

Transkrypt

1 BIIULETYN IINFORMACYJNY N OKRĘGOWEJ KOMIISJII EGZAMIINACYJNEJ Okręgowa Komisja Egzaminacyjna w Krakowie: Al. F. Focha 39, Kraków tel. (01) , 0, 03 fax: (01) Wyniki egzaminu gimnazjalnego źródłem inspiracji w pracy dydaktycznej nauczycieli część matematyczno-przyrodnicza S D C O A B Kraków, październik 005

2 Autorki: Elżbieta Tyralska-Wojtycza, Karolina Kołodziej Współpraca: Barbara Górska, Anna Korska, Dorota Lewandowska, Urszula Mazur Knsultacje: Henryk Szaleniec, Krystyna Traple Opracowanie statystyczne Anna Rappe Korekta: Marzena Kwietniewska-Talarczyk Opracowanie techniczne: Maria Jakóbiec Okręgowa Komisja Egzaminacyjna w Krakowie ISSN Okręgowa Komisja Egzaminacyjna w Krakowie

3 Spis treści Wstęp... 5 Rozdział I: Analiza zadań w arkuszu standardowym według standardów wymagań egzaminacyjnych... 7 Rozdział II: Realizacja standardów wymagań egzaminacyjnych w arkuszu egzaminacyjnym Rozdział III: Analiza rozwiązań uczniowskich Rozdział IV: W głąb kryterialnego oceniania, czyli kategoryzacja rozwiązań uczniowskich w z zadaniach otwartych... 8 Rozdział V: Standardy lubiane lub nie? Rozważania wstępne o części matematyczno-przyrodniczej egzaminu gimnazjalnego Okręgowa Komisja Egzaminacyjna w Krakowie 3

4 4 Okręgowa Komisja Egzaminacyjna w Krakowie

5 Wstęp Niniejszy materiał adresowany jest do nauczycieli, egzaminatorów, dyrektorów gimnazjów a także doradców metodycznych, konsultantów i innych zainteresowanych częścią matematyczno-przyrodniczą egzaminu gimnazjalnego. Przeważająca część informacji została przygotowana na podstawie wyników uzyskanych przez uczniów z terenu działania OKE w Krakowie podczas egzaminu w kwietniu 005 roku. Mamy nadzieję, że będą one wykorzystane jako materiał pomocniczy w doskonaleniu umiejętności diagnozowania, oceniania i badania osiągnięć uczniów oraz w przygotowaniu uczniów do egzaminu. Celem tego opracowania było przygotowanie materiału, który w konfrontacji z wynikami własnych uczniów będzie przydatny w doskonaleniu warsztatu pracy nauczycieli, zainspiruje Koleżanki i Kolegów do kolejnych twórczych działań dydaktycznych, których owocem będą jeszcze lepsze osiągnięcia podczas przyszłorocznego egzaminu gimnazjalnego. Zamieszczono tu analizę zadań zawartych w arkuszu standardowym. Za kryterium podziału zadań przyjęto grupy badanych umiejętności, czego odzwierciedleniem są obszary standardów wymagań egzaminacyjnych. W dziale tym przyjęto następująca zasadę: najpierw zamieszczono treść zadania, w przypadku zadań zamkniętych wielokrotnego wyboru podano wszystkie dystraktory, a szarym kolorem wyróżniono westraktor odpowiedź poprawną, każde zadanie opatrzono komentarzem, w którym zawarto informacje o atrakcyjności poszczególnych dystraktorów; starano się też wyjaśnić, jakie mogą być przyczyny wyboru takiego a nie innego dystraktora przez ucznia, na końcu komentarza zamieszczono informacje o łatwości zadania. W przypadku zadań otwartych postępowano podobnie: różnica polega na tym, że zamiast atrakcyjności poszczególnych dystraktorów przedstawiono analizę łatwości poszczególnych czynności, na tej podstawie próbowano formułować wnioski do dalszej pracy z uczniami, w nadziei, że pomogą one uczniom uniknąć choć części błędów, które były udziałem ich rówieśników w egzaminie tegorocznym, w zadaniach otwartych pod tekstem danego zadania zamieszczono schemat jego punktowania. Analiza zadań arkusza standardowego obejmuje cztery działy, tj. tyle, ile jest standardów wymagań egzaminacyjnych w części matematyczno-przyrodniczej egzaminu gimnazjalnego. W następnej części opracowania przedstawiono analizę realizacji standardów wymagań egzaminacyjnych podczas tegorocznego egzaminu gimnazjalnego. Na początku zamieszczono opis każdego obszaru standardów wymagań egzaminacyjnych, tak by czytelnik mógł sobie przypomnieć lub wręcz zapoznać się z zawartością poszczególnych obszarów standardów. Następnie przedstawiono realizację tego obszaru, to znaczy opisano grupy umiejętności badanych w danym obszarze, z uwzględnieniem numerów zadań, oraz scharakteryzowano konkretne czynności, które powinien wykonać uczeń, by uzyskać punkty. Okręgowa Komisja Egzaminacyjna w Krakowie 5

6 Scharakteryzowano także łatwość poszczególnych umiejętności opisanych standardami oraz badane czynności ucznia, które wynikały z treści zadań. Na podstawie tego działu można uzyskać informację, jakie grupy umiejętności były badane w bieżącym roku i w jakim stopniu zostały opanowane przez uczniów. Kolejny rozdział to analiza przykładowych rozwiązań uczniowskich w zadaniach otwartych. To właśnie w zadaniach otwartych, zwłaszcza rozszerzonej odpowiedzi, uczeń samodzielnie formułuje myśli. Daje to możliwość przyjrzenia się tokowi rozumowania uczniów, poznania sposobów rozwiązywania przez nich zadań i ich kategoryzacji. Na tej podstawie możemy się zorientować, co sprawia zdającym największą trudność, a co jest dla nich łatwe. Mamy też możliwość poznania, jakie sposoby rozwiązania zadania podejmują najczęściej, jakie rzadziej oraz rozwiązań nietypowych. To cenna informacja dla uczących i konstruktorów zadań. Każde zamieszczone w materiale rozwiązanie uczniowskie opatrzone jest komentarzem autorskim. Łącznie znajdą tu Państwo 58 przykładów rozwiązań uczniowskich z grupy zadań otwartych (zad ). Zapoznając się z tym materiałem, poznają Państwo sposób radzenia sobie zdających z zadaniami egzaminacyjnymi, miejsca newralgiczne, w których uczniowie najczęściej popełniali błędy. Udostępniamy też odbiorcom rezultaty pogłębionej analizy 400 prac uczniów. W badaniu tym uwzględniono kategoryzację rozwiązań uczniowskich wraz z typologią popełnianych przez nich błędów. To analityczne podejście do kryteriów punktowania pozwala na bardziej wnikliwą obserwację szlaku, którym biegnie myśl ucznia podczas rozwiązywania zadania, a także trudności, które spowodowały błędy w rozwiązaniach. Nie chodzi tu o poznanie błędów samych w sobie, lecz o danie nauczycielom materiału, który przy zastosowaniu odpowiednich do danej grupy uczniów technik edukacyjnych zaowocuje skuteczniejszym nauczaniem uczeniem się uczniów, a w efekcie podniesieniem poziomu umiejętności naszych wychowanków. Na zakończenie tego rozdziału zamieszczono wnioski wynikające z tych badań. Cztery lata egzaminu gimnazjalnego zachęcają też do refleksji nad obecnością poszczególnych standardów w arkuszach egzaminacyjnych. Część matematycznoprzyrodnicza egzaminu obejmuje treści pięciu przedmiotów i siedmiu ścieżek. Już tylko ta złożoność zachęca do refleksji nad kształtem arkusza. Krok dalszy, czyli przegląd częstości stosowania czynności z poszczególnych standardów w arkuszach w kolejnych latach, dostarcza ciekawych spostrzeżeń i jest źródłem pytań, na które warto szukać odpowiedzi. Pytania te i próby odpowiedzi lub tylko rozważania na ich temat znajdą Państwo w rozdziale Standardy lubiane lub nie? Rozważania wstępne o części matematyczno-przyrodniczej egzaminu gimnazjalnego. Każdy z rozdziałów niniejszego opracowania jest niezależny od innego. Dzięki temu można korzystać tylko z poszczególnych części publikacji albo analizować je w dowolnej kolejności, w zależności od potrzeb i zainteresowań, tworząc mniejsze części. Zachęcamy do zapoznania się z całością materiału, bo daje to najlepszy obraz części matematyczno-przyrodniczej egzaminu gimnazjalnego w bieżącej sesji oraz w ciągu czterech lat obecności tego egzaminu w naszym szkolnictwie. Serdecznie dziękujmy wszystkim egzaminatorom, a zwłaszcza naszej kadrze egzaminacyjnej koordynatorom, przewodniczącym zespołów egzaminatorów, zastępcom przewodniczących, weryfikatorom oraz wszystkim koleżankom i kolegom z Okręgowej Komisji Egzaminacyjnej w Krakowie, którzy przyczynili się do powstania niniejszego opracowania. Autorki 6 Okręgowa Komisja Egzaminacyjna w Krakowie

7 Rozdział I Analiza zadań w arkuszu standardowym według standardów wymagań egzaminacyjnych Wstęp Chcąc przybliżyć Państwu czym charakteryzują się rozwiązania uczniowskie, na czym polegały błędy piszących, jakie czynności były dla ogółu uczniów łatwe, a które opanowali gorzej, przygotowaliśmy analizę zadań zamieszczonych w tegorocznym teście, a tym samym analizę badanych umiejętności. Mamy nadzieję, że pozwoli to Państwu spojrzeć na tegoroczny test znacznie dokładniej niż tylko na podstawie sumy punktów uzyskanych przez uczniów w danej części egzaminu gimnazjalnego. Naszą intencją jest dostarczenie materiału, który będzie podstawą do rozważań indywidualnych nauczycieli a także zespołów przedmiotowych lub/i międzyprzedmiotowych nad kierunkami pracy pedagogicznej oraz przyczyni się do doskonalenia warsztatu metodycznego nauczycieli, a tym samym umiejętności uczniów. Praca z uczniami poparta analizą załączonych zadań powinna także zaowocować ich refleksją nad sposobem uczenia się, w tym przygotowania się do egzaminu zewnętrznego, a także nad sposobami rozwiązywania zadań zamkniętych wielokrotnego wyboru i zadań otwartych. Wszak dokładne przeczytanie tekstu zadania; utrzymywanie w pamięci treści poleceń; umiejętność szacowania czy eliminowania dystraktorów; opisywanie rysunków; odczytywanie informacji zamieszczonych np. na mapach, rysunkach, wykresach; precyzyjne wyrażanie swoich myśli w formie pisemnej; pamiętanie o zasadzie podawania tylko jednej wersji rozwiązania (a nie np. dwóch do wyboru) to przykładowe umiejętności, których opanowanie warunkuje uzyskanie lepszych wyników podczas egzaminu, a które uczniowie nabywają ćwicząc, ćwicząc, ćwicząc. Na zakończenie pragniemy zwrócić uwagę, że podane wartości łatwości zadań i/lub czynności dotyczą wyników uzyskanych przez uczniów uczestniczących w egzaminie gimnazjalnym na terenie działalności OKE w Krakowie. TABELA 1. Sprawdzane czynności i ich łatwości w I obszarze standardów wymagań egzaminacyjnych w standardowym teście matematyczno-przyrodniczym Numer zadania Nazwa sprawdzanej umiejętności (z numerem standardu) Uczeń: 1. wykonuje obliczenia w różnych sytuacjach praktycznych stosuje w praktyce własności działań (). wykonuje obliczenia w różnych sytuacjach praktycznych operuje procentami () 3. wykonuje obliczenia w różnych sytuacjach praktycznych operuje procentami () 4. wykonuje obliczenia w różnych sytuacjach praktycznych operuje procentami () Nazwa sprawdzanej czynności Uczeń: porównuje liczby zamienia procent na ułamek oblicza procent danej liczby oblicza różnicę powierzchni kontynentów Łatwość czynności Łatwość zadania 0,80 0,80 0,80 0,80 0,77 0,77 0,79 0,79 Okręgowa Komisja Egzaminacyjna w Krakowie 7

8 Numer zadania Nazwa sprawdzanej umiejętności (z numerem standardu) Uczeń: 5. stosuje terminy i pojęcia matematycznoprzyrodnicze (1) 13. posługuje się własnościami figur oblicza miary figur przestrzennych (3) 14. wykonuje obliczenia w różnych sytuacjach praktycznych operuje procentami () 16. stosuje terminy i pojęcia matematycznoprzyrodnicze (1) 17. wykonuje obliczenia w różnych sytuacjach praktycznych stosuje w praktyce własności działań () 33. posługuje się własnościami figur (3) wykonuje obliczenia w sytuacji praktycznej () 34. posługuje się własnościami figur (3) wykonuje obliczenia w różnych sytuacjach praktycznych () Nazwa sprawdzanej czynności Uczeń: czyta ze zrozumieniem tekst i wybiera ilustrujący go schemat oblicza objętość walca oblicza, ile procent jednej liczby stanowi druga wskazuje cechę południków Łatwość czynności Łatwość zadania 0,77 0,77 0,57 0,57 0,6 0,6 0,70 0,70 przekształca zapis wykładniczy na dziesiętny 0,48 0,48 oblicza pole kwadratu wykonuje działania na liczbach i jednostkach stosuje twierdzenie Pitagorasa oblicza pole powierzchni całkowitej ostrosłupa wykonuje obliczenia procentowe wykonuje działania na liczbach i jednostkach 0,44 0,4 0,7 0,30 0,43 0,17 0,34 0,9 Poniższy diagram wykorzystaj do rozwiązania zadań od 1. do 4. Przyjmij, że lądy na Ziemi zajmują łącznie 150 mln km. Diagram przedstawia procentowy udział powierzchni poszczególnych kontynentów w całkowitej powierzchni lądów. 6% 9% 7% Europa Azja 1% 30% Afryk Ameryka Ameryka 16% Australi 0% Antarktyda B. Dobosik, A. Hibszer, J. Soja, Tablice geograficzne, Katowice Okręgowa Komisja Egzaminacyjna w Krakowie

9 Zadanie 1. (0-1) Które zdanie jest prawdziwe? A. Ameryka Północna i Azja zajmują łącznie więcej niż połowę lądów Ziemi. B. Europa ma najmniejszą powierzchnię spośród wszystkich kontynentów. C. Afryka i Azja mają łącznie większą powierzchnię niż pozostałe lądy Ziemi. D. Powierzchnia Azji stanowi mniej niż jedną trzecią powierzchni lądów Ziemi. Uczeń, na podstawie diagramu procentowego, miał porównać powierzchnię kontynentów, wybierając zdanie prawdziwe. We wszystkich wersjach poprawną odpowiedzią była odpowiedź D. 80% wszystkich piszących wybierało odpowiedź właściwą, natomiast dla poszczególnych wersji testu współczynniki łatwości wynoszą odpowiednio: 0,78; 0,8; 0,81. Wielu uczniów wybierało odpowiedź Afryka i Azja mają łącznie większą powierzchnię niż pozostałe lądy Ziemi, tymczasem ich łączna powierzchnia jest równa powierzchni pozostałych lądów, dotyczy to 16% uczniów piszących wersję A oraz 11% piszących wersję B i C. Pozostałe dwa dystraktory były jednakowo atrakcyjne, wybierało je 3% lub 4% rozwiązujących poszczególne wersje. Zadanie to nie stwarzało uczniom trudności, gdyż badało podstawową umiejętność porównywanie liczb. Łatwość zadania: 0,80 (łatwe) Zadanie. (0-1) Jaką część powierzchni lądów na Ziemi zajmuje Afryka? A. 4 1 B C. 0 1 D. 50 Uczeń powinien zamienić procent na ułamek, żeby odpowiedzieć, jaką część powierzchni lądów zajmuje Afryka. 80% uczniów niezależnie od kolejności dystraktorów 1 wskazuje odpowiedź poprawną. Około 10% piszących wybierało odpowiedź, dla tych uczniów 0% to. Około 8% uczniów wybierało odpowiedź, co może oznaczać, że 0 4 porównują oni powierzchnię Afryki do powierzchni pozostałych lądów (oprócz Afryki), a nie do powierzchni wszystkich lądów na Ziemi, jak było podane w zadaniu. Stopień opanowania badanej umiejętności przez zdających jest satysfakcjonujący, można przypuszczać, że jest to jedna z elementarnych umiejętności matematycznych. Łatwość zadania: 0,80 (łatwe) Okręgowa Komisja Egzaminacyjna w Krakowie 9

10 Zadanie 3. (0-1) Jaką powierzchnię ma Australia? A. 0,9 mln km B. 6 mln km C. 9 mln km D. 90 mln km Uczeń miał podać powierzchnię Australii, obliczając 6% liczby km. Niezależnie od wersji testu 7% zdających poprawnie wykonało obliczenia i podało prawidłową odpowiedź. We wszystkich wersjach testu około 18% uczniów wybierało odpowiedź 6 mln km, utożsamiając przedstawione na diagramie 6% z 6 mln km. Natomiast odpowiedź 0,9 mln km zaznaczyło 8% a odpowiedź 90 mln km około 3% uczniów. Wybory te wynikały z błędów rachunkowych. Mimo że umiejętność obliczania procentu danej liczby jest dobrze opanowana przez znakomitą większość uczniów, to jednak, biorąc pod uwagę fakt, że jest to umiejętność bardzo przydatna w życiu, należy ją ciągle ćwiczyć z uczniami. Łatwość zadania: 0,7 (łatwe) Zadanie 4. (0-1) Powierzchnia Antarktydy jest większa od powierzchni Europy o: A. 3 mln km B. 7,5 mln km C. 30 mln km D. 34,5 mln km W zadaniu należało określić, o ile powierzchnia Antarktydy jest większa od powierzchni Europy. Do obliczenia różnicy powierzchni kontynentów uczeń powinien wykorzystać informacje zawarte w diagramie procentowym. Prawidłową odpowiedź, czyli 3 mln km, wybrało 79% uczniów. Prawie 9% wskazało odpowiedź 7,5 mln km ; prawdopodobnie ci uczniowie, zamiast obliczać % powierzchni lądów, wykonują dzielenie przez i wybierają ten dystraktor, którego cyfry są spójne z otrzymanymi z tego dzielenia. (150 : = 75, a ponieważ wśród odpowiedzi nie ma wartości 75 wybierają wartość 7,5). Niespełna 8% zaznaczało odpowiedź 30 mln km, co wskazuje na błąd rachunkowy przy obliczaniu procentu danej liczby (mnożą przez i dzielą przez 10 zamiast przez 100). Ponad 4% piszących wybierało odpowiedź 34,5 mln km ; ci uczniowie prawdopodobnie zamiast powierzchni Antarktydy uwzględniali w swoich obliczeniach Azję. Atrakcyjności poszczególnych dystraktorów w każdej z wersji są bardzo zbliżone. Jak widać z powyższej analizy, uczniowie mieli nie tyle problemy ze sprawdzaną umiejętnością, czyli obliczaniem różnicy powierzchni kontynentów, co z uważną analizą diagramu. Łatwość zadania: 0,79 (łatwe) 10 Okręgowa Komisja Egzaminacyjna w Krakowie

11 Zadanie 5. (0-1) Drzewa tworzą największą biomasę w lesie. Która piramida przedstawia ten stan? P producenci K I konsumenci I rzędu K II konsumenci II rzędu A. B. C. D. K II K I P K II K I P K II K I P K II K I P W zadaniu sprawdzano umiejętność stosowania terminów przyrodniczych. Uczeń na podstawie tekstu powinien wybrać odpowiedni schemat. 76% uczniów prawidłowo wybiera piramidę ilustrującą sytuację, w której drzewa tworzą największą biomasę w lesie. We wszystkich trzech wersjach testu co dziesiąty uczeń wybiera jako poprawną piramidę odwróconą, czyli schemat ilustrujący sytuację dokładnie odwrotną do prawidłowej. Biorąc pod uwagę fakt, że w zadaniu zostały opisane zastosowane w schemacie oznaczenia, należy przypuszczać, że o takim wyborze decydowało umieszczenie producentów na dole piramidy. Uczniowie ci nie zauważyli, że równocześnie był to najmniejszy element tej piramidy, a nie największy, co schematycznie oznacza wielkość biomasy producentów w lesie. W zależności od wersji testu pięciu do siedmiu uczniów na stu wybiera schematy, w których podstawę piramidy także stanowią producenci, ale ich biomasa jest równa lub mniejsza od biomasy konsumentów I rzędu, co jest błędną ilustracją sytuacji przedstawionej w trzonie zadania. Prawdopodobnie zwracają uwagę tylko na położenie producentów w piramidzie, a nie na wielkość biomasy. Łatwość zadania: 0,77 (łatwe) Zadanie 13. (0-1) Które z naczyń w kształcie walca, o wymiarach przedstawionych na rysunku, ma największą objętość? I II III IV r = 6 cm r = 5 cm r = 4 cm r = 3 cm h = 6 cm h = 9 cm h = 1 cm h = 18 cm h wysokość walca r promień podstawy walca A. I B. II C. III D. IV Okręgowa Komisja Egzaminacyjna w Krakowie 11

12 Spośród czterech walców, w których dany był promień podstawy i wysokość, należało wybrać ten, który ma największą objętość. Tylko nieco ponad 57% gimnazjalistów wybrało prawidłową odpowiedź (figura II). Około 17% uczniów wskazało na figurę IV lub I, oceniając ich objętość na pierwszy rzut oka, czyli tylko na podstawie wysokości lub wielkości podstawy. Blisko 8% wybierało figurę III. Około połowa uczniów nie zna wzoru na objętość walca lub zapisuje go z błędem. Łatwość zadania: 0,57 (umiarkowanie trudne) Zadanie 14. (0-1) Do naczynia o objętości V = 0,75 l wlano 0,45 l wody. Jaki procent objętości tego naczynia stanowi objętość wody? A. 6 B. 16,(6) C. 33,75 D. 60 W tym zadaniu należało obliczyć, jakim procentem liczby 0,75 jest liczba 0,45. Prawidłowego wyboru dokonało 6% wszystkich piszących egzamin. Odpowiedź C wybrało ponad 19%, czyli prawie co piąty uczeń 0,45 l traktuje jako 45% i mnoży 45% przez 0,75. Otrzymuje wynik 33,75, który występuje wśród dystraktorów, prawdopodobnie dlatego nie kontynuuje obliczeń, a zatem nie zauważa swego błędnego rozumowania. Niemal co dziesiąty uczeń wybiera odpowiedź B, czyli oblicza stosunek objętości naczynia do objętości wody i uzyskany wynik usiłuje zamienić na procenty, otrzymaną wartość mnoży jednak przez 10 zamiast przez 100. Pozostałe 10% uczniów prawdopodobnie zastosowało poprawną metodę rozwiązania zadania, ale popełniło błąd rachunkowy. Powyższy przykład wskazuje, że obliczenia typu ile procent jednej liczby stanowi druga?, które nadal są trudne dla niemal co drugiego ucznia, powinny być przedmiotem częstszych ćwiczeń na lekcjach. Łatwość zadania: 0,57 (umiarkowanie trudne) Zadanie 16. (0-1) Która cecha dotyczy południków? A. Są różnej długości. B. Mają kształt okręgów. C. Łączą dwa bieguny Ziemi. D. Wyznaczają kierunek wschód-zachód. W zadaniu badano umiejętność wskazania cech południków. Poprawną cechę południków wybrało 70% uczniów. Zastanawia jednak, że w zależności od arkusza co 7-8 uczeń wybierał dystraktor wyznaczają kierunek wschódzachód. Być może ta grupa uczniów kojarzyła południki jako linie, które wskazują kierunki świata. Widocznie ci uczniowie nie opanowali tych podstawowych terminów przyrodniczych. Łatwość zadania: 0,70 (łatwe) 1 Okręgowa Komisja Egzaminacyjna w Krakowie

13 Zadanie 17. (0-1) Średnia odległość Marsa od Słońca wynosi użycia potęgi jest równa 8,8 10 A km B km C km D km km. Odległość ta zapisana bez W zadaniu tym należało wybrać zapis dziesiętny liczby danej w postaci wykładniczej. Bezbłędnego wyboru dokonało 48% uczniów. Prawie co trzeci uczeń wskazał liczbę , co świadczy o błędnej interpretacji potęgi 10 8 w notacji wykładniczej liczby: zamiast przesunąć przecinek o osiem miejsc, uczeń dopisuje osiem zer, równocześnie przyjmując za podstawę liczbę 8 zamiast,8. Około 17% uczniów wskazuje liczbę 10 razy większą, a 5% liczbę 10 razy mniejszą niż właściwa. W obu tych przypadkach trudno jednoznacznie określić przyczyny popełnianych przez nich błędów. Wprawdzie umiejętność zapisywania zarówno dużych, jak i małych liczb w postaci wykładniczej nie ma dużego znaczenia w życiu codziennym, niemniej jednak jest bardzo użyteczna w dalszej edukacji i ma charakter interdyscyplinarny. Dlatego zachęcamy do systematycznego doskonalenia tej umiejętności. Łatwość zadania: 0,48 (trudne) Zadanie 33. (0-) Wieża Eiffla znajduje się na obszarze w kształcie kwadratu o boku długości 15 m. Ile hektarów powierzchni ma ten obszar? Zapisz obliczenia. Wynik podaj z dokładnością do 0,1 ha. Odpowiedź:... Schemat punktowania Poprawna odpowiedź Punktowanie zadań Inne odpowiedzi poprawne P = (m ) P = 1565 m P = 1,5635 ha P 1,6 ha a) poprawne obliczenie pola kwadratu w m lub bez jednostki 1 p. b) poprawny wynik z jednostką 1 p. W zadaniu badano umiejętności posługiwania się własnościami figur oraz wykonywania obliczeń w sytuacji praktycznej. Pierwsze kryterium, czyli obliczenie pola kwadratu, spełniło 44% egzaminowanych; większość uczniów, którzy podjęli rozwiązanie tego zadania, zna sposób obliczania pola kwadratu; niestety, część z nich błędnie wykonuje mnożenie liczb lub dopisuje błędną jednostkę np. m, ha, a. Tylko 5% uczniów otrzymało punkt za Okręgowa Komisja Egzaminacyjna w Krakowie 13

14 drugie kryterium, czyli zamianę m na hektary i zaokrąglenie wyniku. Przyczyny tego stanu rzeczy to w równej mierze nieumiejętność zamiany m na ha, jak i zapominanie o poleceniu podania wyniku z dokładnością do 0,1 ha. Łatwość zadania: 0,34 (trudne) Zadanie 34. (0-4) Piramida ma kształt ostrosłupa prawidłowego czworokątnego. Ile cm papieru potrzeba na wykonanie modelu tej piramidy (wraz z podstawą), w którym krawędzie podstawy mają długość 10 cm a wysokość 1 cm? Ze względu na zakładki zużycie papieru jest większe o 5%. Zapisz obliczenia. S D C O A B Odpowiedź:... Schemat punktowania P C = a Poprawna odpowiedź a h h wysokość ściany bocznej Punktowanie zadań poprawna metoda obliczania wysokości ściany bocznej 1 p. b) poprawna metoda obliczania pola powierzchni całkowitej ostrosłupa 1 p. Inne odpowiedzi poprawne W obliczeniach jednostki stosowane są poprawnie lub mogą być pominięte. c) poprawna metoda obliczania 5% P C 1 p. d) poprawne obliczenia i poprawny wynik z jednostką 1 p. P C = a + ah W OES : h = Okręgowa Komisja Egzaminacyjna w Krakowie

15 h =169 h =13 (cm) P = = 360 (cm ) C 360 cm 100% x cm 5% x = (cm ) 100 x = 18 cm 360 cm + 18 cm = 378 cm Odp: Na wykonanie modelu potrzeba 378 cm papieru. Chcąc obliczyć, ile cm papieru potrzeba na wykonanie modelu ostrosłupa z uwzględnieniem zużycia panieru na zakładki, uczeń powinien wcześniej obliczyć wysokość ściany bocznej ostrosłupa. Uczniowie w wielu przypadkach nie widzieli potrzeby liczenia wysokości ściany bocznej lub błędnie stosowali twierdzenie Pitagorasa. W rezultacie łatwość tej czynności w zadaniu wynosi 0,7. Podobną łatwością charakteryzuje się następna badana w tym zadaniu czynność, tj. obliczanie powierzchni całkowitej ostrosłupa 0,30. Znaczna część piszących utożsamiała podaną w treści zadania wysokość ostrosłupa z wysokością ściany bocznej tego ostrosłupa lub traktowała ścianę boczną jako trójkąt równoboczny. Część uczniów rozwiązujących to zadanie nie uwzględniła w obliczeniach faktu, że powierzchnia boczna ostrosłupa składa się z 4 trójkątów, a nie tylko z jednego. Te błędy głównie spowodowały niską łatwość tego kryterium. Stosunkowo dobrze uczniowie radzili sobie z obliczaniem procentu liczby, czyli obliczaniem 5% z powierzchni całkowitej ostrosłupa potrzebnej na zakładki. 43% piszących wykonało tę czynność poprawnie. Spośród piszących tylko 16% rozwiązało poprawnie całe zadanie. Łatwość zadania: 0,9 (trudne) TABELA. Sprawdzane czynności i ich łatwości w II obszarze standardów wymagań egzaminacyjnych w standardowym teście matematyczno-przyrodniczym Numer zadania Nazwa sprawdzanej umiejętności (z numerem standardu) Uczeń: Nazwa sprawdzanej czynności Uczeń: Łatwość czynności/ zadania 8. analizuje informacje przedstawione w formie wykresu () analizuje piramidę wiekową i płciową 0,76 9. operuje informacją wykorzystuje informacje w praktyce () określa kierunek marszu na mapie na podstawie danego azymutu 0,60 Okręgowa Komisja Egzaminacyjna w Krakowie 15

16 Numer zadania Nazwa sprawdzanej umiejętności (z numerem standardu) Uczeń: Nazwa sprawdzanej czynności Uczeń: Łatwość czynności/ zadania 10. operuje informacją przetwarza informacje () określa przybliżoną odległość w terenie na podstawie mapy 0, odczytuje informacje z mapy (1) określa kierunki geograficzne 0,69 1. operuje informacją przetwarza informacje () 18. operuje informacją porównuje informacje () przyporządkowuje skład gatunkowy drzew do określonego rodzaju lasu porównuje właściwości substancji na podstawie skali ph 0,79 0, operuje informacją interpretuje informacje () określa odczyn substancji wg skali ph 0,79 3. operuje informacją analizuje informacje () 4. operuje informacją analizuje informacje () 5. odczytuje informacje przedstawione w formie tabeli (1) 7. operuje informacją selekcjonuje informacje () Schemat do zadania 8. określa właściwości pierwiastków na podstawie szeregu aktywności chemicznej metali określa możliwość otrzymania wodoru w reakcji metalu z kwasem na podstawie szeregu aktywności chemicznej odczytuje z układu okresowego właściwości pierwiastka lokalizuje na mapie państwa sąsiadujące z Polską wiek osobnika 0,83 0,56 0,41 0,51 50% 50% 4% 58% samice liczebność samce Zadanie 8. (0-1) Analizując piramidę przedstawiającą strukturę wiekową i płciową populacji, można stwierdzić, że: A. rodzi się więcej samic niż samców. B. liczebność najstarszych samic i samców jest taka sama. C. liczebność samic i samców jest w każdej grupie wiekowej różna. D. różnica między liczebnością samców i samic w każdej grupie wiekowej jest taka sama. 16 Okręgowa Komisja Egzaminacyjna w Krakowie

17 W tym zadaniu uczeń analizował informacje przedstawione w formie wykresu. Na podstawie analizy piramidy wiekowej i płciowej powinien stwierdzić, że liczebność najstarszych samców i samic jest taka sama. 76% uczniów poprawnie odczytało na wykresie tę informację. We wszystkich trzech wersjach testu 14-16% uczniów uznało, że liczebność samic i samców jest w każdej grupie wiekowej różna. Prawdopodobnie ci uczniowie nie zauważyli, że w najstarszej grupie wiekowej tej populacji liczebność samic i samców jest identyczna. W trakcie śródrocznej pracy dydaktycznej należy kłaść szczególny nacisk na dokładną analizę danych, by uczniowie nie tracili punktów w tak prostych sytuacjach zadaniowych. Łatwość zadania: 0,76 (łatwe) Rozwiązując zadania od 9. do 1., wykorzystaj poniższą informację i mapę. Azymut geograficzny to kąt między kierunkiem północnym a kierunkiem marszu, mierzony od kierunku północnego do kierunku marszu zgodnie z ruchem wskazówek zegara. N N azymut P Legenda Jez. Leśne las mieszany łąka gajówka skała, ostaniec 0 0, km wieża kładka Okręgowa Komisja Egzaminacyjna w Krakowie 17

18 Zadanie 9. (0-1) Turysta, który wyruszył z punktu P na azymut 135º, dojdzie do A. kładki. B. ostańca. C. gajówki. D. wieży obserwacyjnej. W tym zadaniu uczeń wybierał zaznaczony na mapie obiekt, do którego dochodził turysta poruszający się na podany w treści zadania azymut. Pomimo iż wstęp do zadania zawierał objaśnienie pojęcia azymut geograficzny w formie opisowej oraz rysunku schematycznego, dobrej odpowiedzi wieża obserwacyjna udzieliło tylko 60% uczniów. 30% uczniów wybrało ostaniec, obiekt do którego mógł dojść turysta, kierując się na azymut 45º. Być może zasugerowali się rysunkiem pomocniczym, który przedstawiał azymut wynoszący około 45º. Około 10% uczniów wybierało jeden z pozostałych dwóch obiektów. Określanie kierunku marszu na mapie na podstawie danego azymutu to jedna z praktycznych umiejętności przydatnych podczas wędrówek, wydaje się zatem, że powinna być lepiej opanowana przez uczniów, niż wskazują na to wyniki egzaminu. Warto więc częściej ją ćwiczyć podczas zajęć z geografii. Łatwość zadania: 0,60 (umiarkowanie trudne) Zadanie 10. (0-1) Przybliżona odległość w linii prostej od gajówki do ostańca wynosi A. 390 m B. 550 m C. 780 m D m Zadanie sprawdzało opanowanie podstawowej umiejętności geograficznej określanie odległości w terenie na podstawie mapy, z wykorzystaniem skali liniowej. Zależnie od wersji arkusza, poprawnej odpowiedzi udzieliło tylko 54-56% uczniów. 7% uczniów wybrało odpowiedź 3900 m, a więc nie opanowało umiejętności przeliczania jednostek. Częściej wybierane błędne odpowiedzi to 550 m (19-1%) i 780 m (17-19%). Szczególnie dziwi duża ilość odpowiedzi wskazujących odległość 780 m, niemal dwukrotnie dłuższą od odległości właściwej. Wydaje się, że tak duża liczba błędnych odpowiedzi wynika z dokonywania wyboru na oko. Ćwiczenia polegające na odczytywaniu odległości z mapy za pomocą skali liniowej, z wykorzystaniem cyrkla lub paska papieru mogą pomóc uczniom w opanowaniu tej umiejętności. Łatwość zadania: 0,54-0,56 (umiarkowanie trudne) Zadanie 11. (0-1) Turysta, który chce przejść od ostańca przez punkt P do kładki, powinien pójść w kierunku A. północno-zachodnim, a następnie zachodnim. B. północno-wschodnim, a następnie wschodnim. 18 Okręgowa Komisja Egzaminacyjna w Krakowie

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 Jerzy Matwijko Okręgowa Komisja Egzaminacyjna w Krakowie W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 W Pracowni

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012 PUBLICZNE GIMNAZJUM IM. KRÓLA JANA KAZIMIERZA W RAJCZY ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO 2012 CZĘŚĆ MATEMATYCZNO PRZYRODNICZA Egzamin Gimnazjalny w części matematyczno przyrodniczej składał się z

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU w CZĘŚCI MATEMATYCZNO-PRZYRODNICZEJ

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU w CZĘŚCI MATEMATYCZNO-PRZYRODNICZEJ ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU w CZĘŚCI MATEMATYCZNO-PRZYRODNICZEJ Egzamin gimnazjalny organizowany przez Okręgową Komisję Egzaminacyjną w Jaworznie

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Zestaw zadań egzaminacyjnych zawierał 23, w tym 20 zadań zamkniętych

Bardziej szczegółowo

Klasa I szkoły ponadgimnazjalnej matematyka

Klasa I szkoły ponadgimnazjalnej matematyka Klasa I szkoły ponadgimnazjalnej matematyka. Informacje ogólne Badanie osiągnięć uczniów I klas odbyło się 7 września 2009 r. Wyniki badań nadesłało 2 szkół. Analizie poddano wyniki 992 uczniów z 4 klas

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

Układ okresowy pierwiastków

Układ okresowy pierwiastków strona 1/8 Układ okresowy pierwiastków Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Teoria atomistyczno-cząsteczkowa, nieciągłość budowy materii. Układ okresowy pierwiastków

Bardziej szczegółowo

Okręgowa Komisja Egzaminacyjna w Krakowie: Al. F. Focha 39, 30 119 Kraków tel. (012) 61 81 201, 202, 203 fax: (012) 61 81 200 e-mail:

Okręgowa Komisja Egzaminacyjna w Krakowie: Al. F. Focha 39, 30 119 Kraków tel. (012) 61 81 201, 202, 203 fax: (012) 61 81 200 e-mail: Okręgowa Komisja Egzaminacyjna w Krakowie: Al. F. Focha 39, 30 119 Kraków tel. (012) 61 81 201, 202, 203 fax: (012) 61 81 200 e-mail: oke@oke.krakow.pl www.oke.krakow.pl Gimnazjalne zadania egzaminacyjne

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej

Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej 1 Cel: Uzyskanie informacji o poziomie wiedzy i umiejętności uczniów, które pozwolą efektywniej zaplanować pracę z zespołem klasowym.

Bardziej szczegółowo

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I strona 1/9 Test diagnostyczny Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł Część A (0 5) Standard I 1. Przemianą chemiczną nie jest: A. mętnienie wody wapiennej B. odbarwianie wody bromowej C. dekantacja

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI Gimnazjum WYMAGANIA PODSTAWOWE ( OCENA dopuszczająca, dostateczna) Uczeń : Zna i prawidłowo posługuje się symbolami wielkości fizycznych Zna jednostki wielkości fizycznych

Bardziej szczegółowo

Myszyniec, dnia 27.10.2014 r.

Myszyniec, dnia 27.10.2014 r. Myszyniec, dnia 27.10.2014 r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2013/2014 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE DOSTOSOWANE

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE DOSTOSOWANE OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE DOSTOSOWANE SPRAWDZIAN W ROKU 2013 SPIS TREŚCI 1. DANE STATYSTYCZNE UCZNIÓW ROZWIĄZUJĄCYCH DOSTOSOWANE ARKUSZE

Bardziej szczegółowo

Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej

Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza sprawdzianu 2013 klas szóstych szkoły podstawowej Opracowała: mgr Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Charakterystyka

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Konspekt lekcji matematyki

Konspekt lekcji matematyki Konspekt lekcji matematyki 1) Nauczyciel: Ewelina Śliż ) Przedmiot: Matematyka 3) Szkoła: Gimnazjum 4) Klasa: III 5) Czas trwania lekcji: 45 min 6) Nr programu nauczania: DPN 500 17 /08 7) Jednostka metodyczna:

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU W CZĘŚCI matematycznej Dane statystyczne o uczniach (słuchaczach) przystępujących do egzaminu gimnazjalnego Liczbę uczniów

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

23 zadania z chemii. Zadanie 1 (0-1) Podstawowymi składnikami substancji zapachowych wielu roślin są estry. Można je przedstawić wzorem ogólnym:

23 zadania z chemii. Zadanie 1 (0-1) Podstawowymi składnikami substancji zapachowych wielu roślin są estry. Można je przedstawić wzorem ogólnym: 23 zadania z chemii Zadanie 1 (0-1) Podstawowymi składnikami substancji zapachowych wielu roślin są estry. Można je przedstawić wzorem ogólnym: Estrem jest związek o wzorze: Zadanie 2 (0-1) Elementy kolejki

Bardziej szczegółowo

Gra w okręty - scenariusz lekcji chemii w gimnazjum

Gra w okręty - scenariusz lekcji chemii w gimnazjum Gra w okręty - scenariusz lekcji chemii w gimnazjum UKŁAD OKRESOWY BOGATE ŹRÓDŁO WIEDZY O PIERWIASTKACH CHEMICZNYCH Opracowanie: Aneta Karwacka - Kalinowska 1 Temat: Układ okresowy bogate źródło wiedzy

Bardziej szczegółowo

Katolickie Gimnazjum im. Romualda Traugutta w Chojnicach

Katolickie Gimnazjum im. Romualda Traugutta w Chojnicach Katolickie Gimnazjum im. Romualda Traugutta w Chojnicach Opis zestawu egzaminacyjnego Zestaw egzaminacyjny z zakresu przedmiotów matematycznoprzyrodniczych przeznaczony dla uczniów bez dysfunkcji i uczniów

Bardziej szczegółowo

Próbny sprawdzian międzyprzedmiotowy dla klas VI

Próbny sprawdzian międzyprzedmiotowy dla klas VI entrum Pomiarowo-ydaktyczne 80-299 Gdańsk, ul. Orfeusza 4/9 tel. (58) 522 91 93, faks (58) 732 74 84, e-mail: biuro@meritum-cpd.pl www.meritum-cpd.pl Próbny sprawdzian międzyprzedmiotowy dla klas VI Szkoła

Bardziej szczegółowo

MATURA 2015 Z CHEMII - od idei zmian do zadań egzaminacyjnych

MATURA 2015 Z CHEMII - od idei zmian do zadań egzaminacyjnych MATURA 2015 Z CHEMII - od idei zmian do zadań egzaminacyjnych Jolanta Baldy Wrocław, 21 listopada 2014 r. Plan wystąpienia Matura 2015- istota zmian Realizacja podstawy programowej w zadaniach Zasady oceniania

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

Analiza wyników próbnego EGZAMINU GIMNAZJALNEGO z części PRZYRODNICZEJ gimnazjum ZSI w Lubinie

Analiza wyników próbnego EGZAMINU GIMNAZJALNEGO z części PRZYRODNICZEJ gimnazjum ZSI w Lubinie Analiza wyników próbnego EGZAMINU GIMNAZJALNEGO z części PRZYRODNICZEJ gimnazjum ZSI w Lubinie styczeń 2014r. I. WYNIKI TESTU 22.01.2014r. przeprowadzono w klasach trzecich gimnazjum próbny egzamin z części

Bardziej szczegółowo

Analiza wyników sprawdzianu szóstoklasistów w roku szkolnym 2013/2014

Analiza wyników sprawdzianu szóstoklasistów w roku szkolnym 2013/2014 Analiza wyników sprawdzianu szóstoklasistów w roku szkolnym 2013/2014 CHARAKTERYSTYKA SPRAWDZIANU Sprawdzian w klasie VI bada osiągnięcia uczniów kończących szkołę podstawową w zakresie czytania, pisania,

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP MAJ 2015. Analiza wyników próbnego egzaminu gimnazjalnego

Egzamin Gimnazjalny z WSiP MAJ 2015. Analiza wyników próbnego egzaminu gimnazjalnego Egzamin Gimnazjalny z WSiP MAJ 205 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza z przedmiotów przyrodniczych Klasa 2 Arkusz egzaminu próbnego składał się z 23 zadań zamkniętych

Bardziej szczegółowo

RAPORT WYNIKÓW MATURALNYCH PRZEDMIOTY OBOWIĄZKOWE. szkoła województwo okręg kraj 59,46% 46,27% 45,33% 48% Średni wynik procentowy

RAPORT WYNIKÓW MATURALNYCH PRZEDMIOTY OBOWIĄZKOWE. szkoła województwo okręg kraj 59,46% 46,27% 45,33% 48% Średni wynik procentowy RAPORT WYNIKÓW MATURALNYCH PRZEDMIOTY OBOWIĄZKOWE 1. matematyka- 2014 2. 178 os. 3. Wyniki szkoły na tle: Wynik procentowy Wynik staninowy szkoła województwo okręg kraj 59,46% 46,27% 45,33% 48% 5 5/6?

Bardziej szczegółowo

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki

Bardziej szczegółowo

Egzamin maturalny z geografii w 2015 roku

Egzamin maturalny z geografii w 2015 roku Egzamin maturalny z geografii w 2015 roku Gdańsk, 16 lutego 2014 Zmiany w egzaminie maturalnym z geografii Nowa podstawa programowa w gimnazjum od 2009 roku zawierająca wymagania ogólne i szczegółowe III

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego z języka obcego

Analiza wyników egzaminu gimnazjalnego z języka obcego Analiza wyników egzaminu gimnazjalnego z języka obcego nowożytnego w roku szkolnym 2013/2014 Analiza wyników egzaminu gimnazjalnego z języka angielskiego na poziomie podstawowym Arkusz składał się z 40

Bardziej szczegółowo

Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach

Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach Myszyniec, dnia 13.11.2013r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2012/2013 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

1. Przedmiot oceniania:

1. Przedmiot oceniania: Przedmiotowy system oceniania z matematyki w Gimnazjum w Posądzy Opracowano na podstawie Wewnątrzszkolnego Systemu Oceniania oraz w oparciu o program "Matematyka 2001 1. Przedmiot oceniania: a) wiadomości,

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE

OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE OKRĘGOWA KOMISJA EGZAMINACYJNA W ŁODZI INFORMACJE O WYNIKACH UCZNIÓW ROZWIĄZUJĄCYCH ARKUSZE NIESTANDARDOWE SPRAWDZIAN W ROKU 2009 SPIS TREŚCI 1. DANE STATYSTYCZNE UCZNIÓW ROZWIĄZUJĄCYCH DOSTOSOWANE ARKUSZE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM DZIAŁ I: LICZBY I WYRAŻENIA ALGEBRAICZNE Na o cenę dopuszczający uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Załącznik do Uchwały Nr 1/2014/2015 Rady Pedagogicznej Szkoły Podstawowej w Czernikowie z dnia 15.09.2014 r.

Załącznik do Uchwały Nr 1/2014/2015 Rady Pedagogicznej Szkoły Podstawowej w Czernikowie z dnia 15.09.2014 r. Celem doskonalenia sprawności rachunkowej należy: stosować różnorodne ćwiczenia doskonalące sprawność rachunkową, dostosowane do indywidualnych możliwości uczniów; wykorzystywać codzienne okazje do utrwalania

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

Wyniki egzaminu gimnazjalnego źródłem inspiracji nauczyciela i ucznia /na podstawie części matematyczno-przyrodniczej/

Wyniki egzaminu gimnazjalnego źródłem inspiracji nauczyciela i ucznia /na podstawie części matematyczno-przyrodniczej/ XIII Konferencja Diagnostyki Edukacyjnej Uczenie się i egzamin w oczach uczniów. Łomża, 5-7.10.2007 Elżbieta Tyralska Wojtyczka Okręgowa Komisja Egzaminacyjna w Krakowie Wyniki egzaminu gimnazjalnego źródłem

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

Wymagania: na kolejną - wyższą ocenę konieczna jest również znajomość materiału i posiadanie umiejętności wymaganych na ocenę niższą.

Wymagania: na kolejną - wyższą ocenę konieczna jest również znajomość materiału i posiadanie umiejętności wymaganych na ocenę niższą. 1 Wymagania: na kolejną - wyższą ocenę konieczna jest również znajomość materiału i posiadanie umiejętności wymaganych na ocenę niższą. dopuszczający zna pojęcie notacji wykładniczej, zna sposób zaokrąglania

Bardziej szczegółowo

DIAGNOZA PRZED EGZAMINEM W TRZECIEJ KLASIE GIMNAZJUM PIERWSZY PRÓBNY EGZAMIN CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA RUCH W PRZYRODZIE

DIAGNOZA PRZED EGZAMINEM W TRZECIEJ KLASIE GIMNAZJUM PIERWSZY PRÓBNY EGZAMIN CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA RUCH W PRZYRODZIE Sprawdź Swoją Szkołę DIAGNOZA PRZED EGZAMINEM W TRZECIEJ KLASIE GIMNAZJUM PIERWSZY PRÓBNY EGZAMIN CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA RUCH W PRZYRODZIE Instrukcja dla nauczyciela oceniającego test WYDAWNICTWA

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8 ZASADY OCENIANIA:

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Kryteria oceniania z zakresu klasy trzeciej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa III Liczby i wyrażenia algebraiczne Na ocenę dopuszczającą uczeń: zna pojęcie notacji wykładniczej rozumie potrzebę zaokrąglania liczb umie

Bardziej szczegółowo

ZESTAWIENIE I ANALIZA WYNIKÓW EGZAMINU Z JĘZYKA NIEMIECKIEGO NA POZIOMIE PODSTAWOWYM UCZNIÓW III KLAS GIMNAZJUM. Statystyczna analiza danych

ZESTAWIENIE I ANALIZA WYNIKÓW EGZAMINU Z JĘZYKA NIEMIECKIEGO NA POZIOMIE PODSTAWOWYM UCZNIÓW III KLAS GIMNAZJUM. Statystyczna analiza danych ZESTAWIENIE I ANALIZA WYNIKÓW EGZAMINU Z JĘZYKA NIEMIECKIEGO NA POZIOMIE PODSTAWOWYM UCZNIÓW III KLAS GIMNAZJUM. 26. kwietnia 212 roku w Gimnazjum im. Kazimierza Górskiego w Resku odbył się egzamin gimnazjalny

Bardziej szczegółowo

Data.. Klasa.. Wersja A. Tabelkę wypełnia nauczyciel Zadanie 4. Zadanie 5. Zadanie 9 pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt.

Data.. Klasa.. Wersja A. Tabelkę wypełnia nauczyciel Zadanie 4. Zadanie 5. Zadanie 9 pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. Imię i nazwisko Data.. Klasa.. Wersja A 2 3 Tabelkę wypełnia nauczyciel 4 5 6 7 8 9 pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. pkt. MATEMATYKA Diagnoza wstępna absolwenta gimnazjum Na rozwiązanie poniżej

Bardziej szczegółowo

Prywatna Szkoła Podstawowa Nr 105 im. Astrid Lindgren w Warszawie

Prywatna Szkoła Podstawowa Nr 105 im. Astrid Lindgren w Warszawie Prywatna Szkoła Podstawowa Nr 105 im. Astrid Lindgren w Warszawie Raport z przeprowadzonego w kwietniu 2013r. sprawdzianu po szóstej klasie Analiza wyników Warszawa, 2013 rok Średni wynik egzaminu po szóstej

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Mapa niewyczerpane źródło informacji

Mapa niewyczerpane źródło informacji Mapa niewyczerpane źródło informacji Opis: Program powstał, ponieważ uczniowie mają problem w posługiwaniu się mapą i skalą. Mają kłopoty z orientacją na mapie oraz odczytywaniem informacji z różnych typów

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Algebra I sprawozdanie z badania 2014-2015

Algebra I sprawozdanie z badania 2014-2015 MATEMATYKA Algebra I sprawozdanie z badania 2014-2015 IMIĘ I NAZWISKO Data urodzenia: 08/09/2000 ID: 5200154019 Klasa: 11 Niniejsze sprawozdanie zawiera informacje o wynikach zdobytych przez Państwa dziecko

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO KWIECIEŃ 2012

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO KWIECIEŃ 2012 GIMNAZJUM NR 4 IM. KARD. STEFANA WYSZYŃSKIEGO W TYCHACH ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO KWIECIEŃ 2012 Materiał opracował zespół w składzie: 1. Dorota Baron 2. Joanna Maturska Tychy, sierpień 2012r.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

C A C A D A A C D A C C C B B C A D B D A C B B B

C A C A D A A C D A C C C B B C A D B D A C B B B KLUCZ DO ZADAŃ ZAMKNIĘTYCH Zadania WW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 C A C A D A A C D A C C C B B C A D B D A C B B B PROPOZYCJA SCHEMATU PUNKTOWANIA ODPOWIEDZI DO ZADAŃ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

RAPORT PO SPRAWDZIANIE KLAS PIĄTYCH. Opracowały: Beata Jabłońska Agnieszka Rosochacka Wójtowicz

RAPORT PO SPRAWDZIANIE KLAS PIĄTYCH. Opracowały: Beata Jabłońska Agnieszka Rosochacka Wójtowicz RAPORT PO SPRAWDZIANIE KLAS PIĄTYCH Opracowały: Beata Jabłońska Agnieszka Rosochacka Wójtowicz CZERWIEC 2015 Sprawdzian z języka polskiego oraz matematyki przeprowadzony został w klasach V w dniu 15 czerwca

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH DZIAŁ 1. LICZBY I WYRAŻENIA Uczeń otrzymuje ocenę dopuszczającą wtedy gdy: 1. zna pojęcie

Bardziej szczegółowo

PODSTAWOWE FIGURY GEOMETRYCZNE

PODSTAWOWE FIGURY GEOMETRYCZNE TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE III GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki

Bardziej szczegółowo

SZKOLNY PROGRAM POPRAWY EFEKTYWNOŚCI KSZTAŁCENIA

SZKOLNY PROGRAM POPRAWY EFEKTYWNOŚCI KSZTAŁCENIA SZKOLNY PROGRAM POPRAWY EFEKTYWNOŚCI KSZTAŁCENIA W ZSZ NR 1 IM. WŁADYSŁAWA KORŻYKA W RYKACH W ROKU SZKOLNYM 2014/2015 Wstęp Po dokonaniu analizy wyników egzaminu maturalnego z polskiego,matematyki,języka

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab CZĄSTECZKA I RÓWNANIE REKCJI CHEMICZNEJ potrafi powiedzieć co to jest: wiązanie chemiczne, wiązanie jonowe, wiązanie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3

Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3 Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3 WYMAGANIA KONIECZNE OCENA DOPUSZCZAJĄCA: Uczeń: - zna pojęcie notacji wykładniczej - zna sposób zaokrąglania liczb - rozumie potrzebę zaokrąglania

Bardziej szczegółowo