Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales

Wielkość: px
Rozpocząć pokaz od strony:

Download "Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales"

Transkrypt

1

2 Hurtownia danych szansa na nowe życie (starej idei) Jakub Skuratowicz Technical Sales

3 Rys Historyczny

4 Idealna(kiedyś) architektura Data Quality MDM

5 Enterprise Data Warehouse okazał się mitem Ma zawierać wszystkie istotne informacje Jedna wersja prawdy...cel (Niemal) nierealizowany Złożony i trudny w uzytkowaniu Powolny w modyfikacji Finalnie kolejny silos

6 Wciąż pozostają stare problemy Tempo rozszerzania hurtowni Systemy podbiurkowe Operational Data Store Wydajność!

7 Świat się skomplikował

8 Zalew danych 80% zettabytes ,000 petabytes

9 Nowe technologie Data Warehouse Appliance In-database analytics In-memory Real-time Hadoop

10 PureData Appliance Rewolucja w jakości pracy z hurtownią ü Dedykowane urządzenie ü Zintegrowana baza danych, serwer i macierz ü Standardowe interfejsy ü Niski koszt posiadania Prędkość: x szybsze niż tradycyjne systemy Prostota: Znikoma potrzeba administracji Skalowalność: Możliwość obsługi do Petabajtów Inteligencja: Superwydajna zaawansowana analityka 10

11 Architektura PureData System for Analytics AMPP Field Programmable Gate Array = procesor programowalny CPU FPGA Memory Złożona analityka CPU Memory FPGA Lekki Host (IBM xseries, Red Hat Linux) BI ETL CPU FPGA Dyski twarde Memory S-Blade Warstwa sieciowe PureData System for Analytics Appliance Ładowanie Aplikacje

12 Raczej niezwykła metoda akceleracji zapytań select DISTRICT, PRODUCTGRP, sum(nrx) from MTHLY_RX_TERR_DATA where MONTH = ' ' and MARKET = and SPECIALTY = 'GASTRO' FPGA CPU Slice of table MTHLY_RX_TERR_DATA (compressed) Dekompresja Projekcja kolumn Ograniczenie wierszy Złożone, Złączenia, Agregacje, itp. sum(nrx) select DISTRICT, PRODUCTGRP, sum(nrx) where MONTH = ' ' and MARKET = and SPECIALTY = 'GASTRO'

13 Zaawansowana analiza danych Analityka Data Warehouse Data Analytics Grid SQL ETL ETL Prognozy SQL ETL SQL C/C++, Java, Python, Fortran, Detekcje nadużyć

14 Zaawansowana analiza danych Analityka Data Warehouse Data Analytics Grid SQL ETL ETL Prognozy SQL ETL SQL SQL C/C++, Java, Python, Fortran, Detekcje nadużyć

15 NYSE Euronext usprawniła swoją hurtownię używając Netezzy Potrzeba Elastyczność Potrzeba skrócenia czasu dostępu do danych co zajmowało 26h Benefits Błyskawiczne przeszukiwanie 650TB danych; Łącznie ponad 1PB danych na Netezza Czas dostępu zredukowany z 26h do 2min Rozwiązanie działało w przeciągu kilku tygodni 15

16 In-memory In Memory Database Dojrzały produkt Architektura równoległa Ekstremalnie szybka Wydajna Kompresja Optymalizacja wykorzystania RAM Kolumnowy zapis wierszy Informix Warehouse Accelerator

17 Walmart analizuje sprzedaż towarów promocyjnych Potrzeba: Kierownicy sklepów potrzebowali analizować sprzedaż produktów promowanych Obecna baza nie nadążała z przetwarzaniem Zysk Zdolność reakcji na wahania sprzedaży produktów i skuteczność promocji Średnio mniej niż 10 sek. Na generacje raportu 500 współbieżnych użytkowników 1/10 ceny systemu konkurencyjnego 6-10 razy szybciej 17

18 NoSQL -> HiveQL + PIG -> SQL

19 Analiza w czasie rzeczywistym à Ciągły przypływ danych Filter / Sample à Ciągła analiza Transform Annotate Correlate Classify

20 Duży operator telefonii komórkowej z USA Środowisko do analizy CDR w czasie rzeczywistym Analizuje rozmowy, ruch data, smsy w celu wykrycia źle funkcjonujacych nadajników Wykorzystano Streams oraz IBM Netezza Zysk 90% oszczędności czasu ładowania i obróbki danych Ponad 90% oszczędności na dyskach Poprawa jakości sieci, zwiększone zadowolenie klientów, mniej rezygnacji

21 Dokąd zmierzamy

22 Wiele technologii w jednym rozwiązaniu IBM DB2 Analytics Accelerator OLTP Wynik OLAP Małe zapytanie Duże Trudne zapytanie

23 Logiczna hurtownia danych Real Time Scoring and Response Streaming Data IBM Streams Exploration/Discovery Unstructured Data Analytics Unstructured Data Shared Analytics Traditional and Non Traditional Sources, TBs to PBs Unstructured Data Queryable Archive IBM BigInsights Deep analytics and high scaleability reporting Structured Data Shared Analytics IBM Netezza TBs to PBs Structured Data 23

24 Problem dużych danych spowszednieje Logiczna hurtownia danych Hadoop jako samodzielna hurtownia danych Upowszechnienie metod używanych w big data Zaszywanie ich w nowo powstających produktach

25

Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej

Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej Informacja na żądanie, czyli rozwiązania sprzętowej akceleracji analityki biznesowej Tomasz Antonik Systems and Technology Group IBM Lab Services and Training Agenda Trendy w rozwoju systemów analitycznych

Bardziej szczegółowo

Rola infrastruktury w analityce

Rola infrastruktury w analityce Rola infrastruktury w analityce Agnieszka Borkowska Client Technical Architect Tomasz Antonik Consultant O czym będzie... Raport ze stanu świata ile mamy danych cyfrowych Infrastruktura i analityka co

Bardziej szczegółowo

Jak wiedzieć więcej i szybciej - Analizy in-memory

Jak wiedzieć więcej i szybciej - Analizy in-memory Jak wiedzieć więcej i szybciej - Analizy in-memory Michał Grochowski Senior Consultant BI/DWH 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. 2 Copyright 2012, Oracle and/or its affiliates.

Bardziej szczegółowo

Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski

Baza danych in-memory. DB2 BLU od środka 2015-11-10. Artur Wrooski TECHNOLOGIE ANALIZY DANYCH I CHMUROWE W ZASTOSOWANIACH BIZNESOWYCH Poznao, 30 września 2015 DB2 BLU od środka Artur Wrooski Baza danych in-memory Baza danych IN-MEMORY system zarządzania bazami danych,

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

BigData. Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015

BigData. Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015 BigData Czy zawsze oznacza BigProblem? Artur Górnik, SAP Polska Piotr Zacharek, HP Polska 14 kwietnia, 2015 Platforma SAP HANA ETL ETL Cache SAP HANA (DRAM) Transact Analyze Accelerate Wybrane aspekty

Bardziej szczegółowo

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna&

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& Artur Wroński" Priorytety rozwoju technologii Big Data& Analiza większych zbiorów danych, szybciej& Łatwość użycia& Wsparcie

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej. Grzegorz Oleś Big Data Sales Executive

BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej. Grzegorz Oleś Big Data Sales Executive BigData rewolucja czy ewolucja w świecie rozwiązań analityki biznesowej Grzegorz Oleś Big Data Sales Executive Big Data??? wielu o tym pisze Big Data??? wielu o tym mówi Zasadnicze pytania O co chodzi

Bardziej szczegółowo

Nowoczesne bazy danych, czyli przetwarzanie in-memory

Nowoczesne bazy danych, czyli przetwarzanie in-memory Nowoczesne bazy danych, czyli przetwarzanie in-memory 1. Dlaczego przetwarzanie w pamięci? 2. Komercyjne bazy danych in-memory 3. Zwykła baza danych, a baza w pamięci różnice 4. Wymiarowanie sprzętu 5.

Bardziej szczegółowo

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska

Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

BIG DATA DLA KAŻDEGO. Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard

BIG DATA DLA KAŻDEGO. Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard BIG DATA DLA KAŻDEGO Radosław Łebkowski, Sławomir Strzykowski - Microsoft Piotr Zacharek - Hewlett Packard DANE, WSZĘDZIE DANE Masowy przyrost różnego typu danych Rodzaje danych Przyspieszenie Użytkownicy

Bardziej szczegółowo

Digitize Your Business

Digitize Your Business Digitize Your Business Aspekty technologiczne migracji na SAP HANA Prelegenci Błażej Trojan Konsultant technologiczny SAP Basis SI-Consulting Jakub Roguski - Territory Sales Leader Enterprise Systems -

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Przyszłość w rękach Big Data -wizje i technologie dziś. Artur Wroński Information Management Technical Team Leader

Przyszłość w rękach Big Data -wizje i technologie dziś. Artur Wroński Information Management Technical Team Leader Przyszłość w rękach Big Data -wizje i technologie dziś Artur Wroński Information Management Technical Team Leader 2 Co 3hinstalacja nowej turbiny 1 turbina to kilka milionów $ Dotychczas Vestas zainstalował

Bardziej szczegółowo

PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect

PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect Wbudowana wiedza specjalistyczna Dopasowane do zadania Optymalizacja do aplikacji transakcyjnych Inteligentne Wzorce

Bardziej szczegółowo

Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems. Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant

Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems. Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant Przyspiesz swój biznes i obniż koszty dzięki IBM FlashSystems Artur Król Artur.Krol@pl.ibm.com Senior Storage Sales Consultant Agenda Co z tymi danymi? Krótko o sposobach na efektywne gromadzenie, przechowywanie

Bardziej szczegółowo

Hbase, Hive i BigSQL

Hbase, Hive i BigSQL Hbase, Hive i BigSQL str. 1 Agenda 1. NOSQL a HBase 2. Architektura HBase 3. Demo HBase 4. Po co Hive? 5. Apache Hive 6. Demo hive 7. BigSQL 1 HBase Jest to rozproszona trwała posortowana wielowymiarowa

Bardziej szczegółowo

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność

Bardziej szczegółowo

Szybkość instynktu i rozsądek rozumu$

Szybkość instynktu i rozsądek rozumu$ Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015

Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski. Poznań, 30.09.2015 Iwona Milczarek, Małgorzata Marcinkiewicz, Tomasz Staszewski Poznań, 30.09.2015 Plan Geneza Architektura Cechy Instalacja Standard SQL Transakcje i współbieżność Indeksy Administracja Splice Machince vs.

Bardziej szczegółowo

Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia

Konsolidacja wysokowydajnych systemów IT. Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Konsolidacja wysokowydajnych systemów IT Macierze IBM DS8870 Serwery IBM Power Przykładowe wdrożenia Mirosław Pura Sławomir Rysak Senior IT Specialist Client Technical Architect Agenda Współczesne wyzwania:

Bardziej szczegółowo

Rozwiązanie Compuware Data Center - Real User Monitoring

Rozwiązanie Compuware Data Center - Real User Monitoring Rozwiązanie Compuware Data Center - Real User Monitoring COMPUWARE DATA CENTER REAL USER MONITORING... 3 2 COMPUWARE DATA CENTER REAL USER MONITORING Sercem narzędzia Compuware Data Center Real User Monitoring

Bardziej szczegółowo

Tematy projektów Edycja 2014

Tematy projektów Edycja 2014 Tematy projektów Edycja 2014 Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Reguły Projekty zespołowe max. 4

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS WARSZTATY Grupa warsztatowa nr 1 System bilingowy operator telekomunikacyjny od środka Uczestnikom warsztatów zostanie przedstawiona specyfika działalności operatora telekomunikacyjnego ze szczególnym

Bardziej szczegółowo

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL Instalacja, konfiguracja Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Kontakt: piotr.dziwinski@kik.pcz.pl 2 Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

QlikView Business Intelligence, a system ERP SAP Użytkownicy systemów ERP firmy SAP przez wiele lat poszukiwali skutecznych i łatwych sposobów dotarcia do swych danych. Używali arkuszy kalkulacyjnych,

Bardziej szczegółowo

JDBC w LoXiMie. Interfejs Java Database Connectivity dla systemu LoXiM. Adam Michalik 2008

JDBC w LoXiMie. Interfejs Java Database Connectivity dla systemu LoXiM. Adam Michalik 2008 JDBC w LoXiMie Interfejs Java Database Connectivity dla systemu LoXiM Adam Michalik 2008 Sterownik JDBC co to jest? Sterownik JDBC to zbiór klas implementujących interfejsy opisane w specyfikacji JDBC

Bardziej szczegółowo

Spis treści. O autorach... 12

Spis treści. O autorach... 12 Księgarnia PWN: Rick Greenwald, Robert Stackowiak, Jonathan Stern - Oracle Database 11g. To co najważniejsze Spis treści O autorach... 12 Wstęp... 13 Cele książki... 14 Czytelnicy książki... 15 O czwartym

Bardziej szczegółowo

Odkryj Sekrety Efektywnego Business Intelligence

Odkryj Sekrety Efektywnego Business Intelligence Odkryj Sekrety Efektywnego Business Intelligence Analizy zarządcze i szybkie raportowanie ad-hoc w Sybase IQ Marek Ryński Dyrektor Zarządzający, Dział Rozwoju Biznesu, Sybase Polska Warszawa, 3 października

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie. Wydział Geologii, Geofizyki i Ochrony Środowiska. Bazy danych 2

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie. Wydział Geologii, Geofizyki i Ochrony Środowiska. Bazy danych 2 AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie Wydział Geologii, Geofizyki i Ochrony Środowiska Wydajnośd w bazach danych Grzegorz Surdyka Informatyka Stosowana Kraków, 9 Spis treści. Wstęp...

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty legalności USERS Monitorowanie

NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty legalności USERS Monitorowanie www.axence.pl NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty legalności USERS Monitorowanie pracowników HELPDESK Zdalny dostęp, zgłoszenia

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Opis Rozwiązania SAP SAP HANA. Zmieniaj swoją przyszłość lepiej rozumiejąc biznes dzięki analityce predykcyjnej

Opis Rozwiązania SAP SAP HANA. Zmieniaj swoją przyszłość lepiej rozumiejąc biznes dzięki analityce predykcyjnej Opis Rozwiązania SAP SAP HANA Cele Zmieniaj swoją przyszłość lepiej rozumiejąc biznes dzięki analityce predykcyjnej Staw czoła nowej rzeczywistości Organizacje takie jak Twoja są w stanie wykrywać w czasie

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

Rozwiązanie GIS dla mniejszego. miasta: model Miasta Stalowa Wola. Janusz JEśAK. Jacek SOBOTKA. Instytut Rozwoju Miast. ESRI Polska Sp. z o. o.

Rozwiązanie GIS dla mniejszego. miasta: model Miasta Stalowa Wola. Janusz JEśAK. Jacek SOBOTKA. Instytut Rozwoju Miast. ESRI Polska Sp. z o. o. Rozwiązanie GIS dla mniejszego miasta: model Miasta Stalowa Wola Instytut Rozwoju Miast Janusz JEśAK ESRI Polska Sp. z o. o. Jacek SOBOTKA Rybnik, 27-28 września 2007 Plan Prezentacji Geneza przedsięwzięcia

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi II Zimowa Akademia dla Partnerów Handlowych IBM Białka Tatrzańska 5-7.03.2014 Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi Renata Bilecka renata.bilecka@pl.ibm.com

Bardziej szczegółowo

SQL Server. 2012 Analysis Services Model tabelaryczny BISM

SQL Server. 2012 Analysis Services Model tabelaryczny BISM Marco Russo Alberto Ferrari Chris Webb Microsoft SQL Server 2012 Analysis Services Model tabelaryczny BISM Przekład: Jakub Niedźwiedź, Witold Sikorski APN Promise, Warszawa 2012 Skrócony spis treści Przedmowa....

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo

OPIS TECHNICZNY PRZEDMIOTU ZAMÓWIENIA

OPIS TECHNICZNY PRZEDMIOTU ZAMÓWIENIA OPIS TECHNICZNY PRZEDMIOTU ZAMÓWIENIA Załącznik nr 4 do SIWZ/ załącznik do umowy Przedmiotem zamówienia jest dostawa 2 serwerów, licencji oprogramowania wirtualizacyjnego wraz z konsolą zarządzającą oraz

Bardziej szczegółowo

Wprowadzenie do sieciowych systemów operacyjnych. Moduł 1

Wprowadzenie do sieciowych systemów operacyjnych. Moduł 1 Wprowadzenie do sieciowych systemów operacyjnych Moduł 1 Sieciowy system operacyjny Sieciowy system operacyjny (ang. Network Operating System) jest to rodzaj systemu operacyjnego pozwalającego na pracę

Bardziej szczegółowo

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla

Bardziej szczegółowo

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.

HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K. HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model

Bardziej szczegółowo

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi#

Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi# Infrastruktura jako fundament efektownego gromadzenia, przechowywania i zarządzania danymi# Renata Bilecka renata.bilecka@pl.ibm.com! Certified IT Specialist, Storage Consultant! Agenda! Krótko o sposobach

Bardziej szczegółowo

Geomant Mobile Presence

Geomant Mobile Presence Geomant Mobile Presence Geomant Presence Suite dla Microsoft OCS Mobile Presence WSKAZUJE LOKALIZACJĘ GEOGRAFICZNĄ Rozwiązanie Geomant Mobile Presence wzbogaca informację o dostępności o szczegóły lokalizacji

Bardziej szczegółowo

Konsolidacja. OPITZ CONSULTING Kraków

Konsolidacja. OPITZ CONSULTING Kraków Konsolidacja OPITZ CONSULTING Kraków Jacek Sapiński KRK Event OPITZ CONSULTING Kraków 211 Strona 1 1 Konsolidacja OPITZ CONSULTING Kraków 211 Strona 2 Sytuacja uwarunkowana historycznie A 1 5 Application

Bardziej szczegółowo

SAM-Insights ADVANCED CENTRAL DATA COLLECTOR (ACDC) Dane licencyjne nie mierzone przez skanowanie. Nowy moduł ACDC o unikalnej funkcjonalności

SAM-Insights ADVANCED CENTRAL DATA COLLECTOR (ACDC) Dane licencyjne nie mierzone przez skanowanie. Nowy moduł ACDC o unikalnej funkcjonalności SAM-Insights ADVANCED CENTRAL DATA COLLECTOR (ACDC) Dane licencyjne nie mierzone przez skanowanie Dla zarządzania oprogramowaniem i wyzwaniem jest nie tylko złożone środowisko serwerowe, skomplikowana

Bardziej szczegółowo

Axence nvision Nowe możliwości w zarządzaniu sieciami

Axence nvision Nowe możliwości w zarządzaniu sieciami www.axence.pl Axence nvision Nowe możliwości w zarządzaniu sieciami Axence nvision moduły NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty

Bardziej szczegółowo

Presented by. Dr. Morten Middelfart, CTO

Presented by. Dr. Morten Middelfart, CTO Meeting Big Data challenges in Leadership with Human-Computer Synergy. Presented by Dr. Morten Middelfart, CTO Big Data Data that exists in such large amounts or in such unstructured form that it is difficult

Bardziej szczegółowo

Problematyka hurtowni danych

Problematyka hurtowni danych Plan wykładu Problematyka hurtowni 1. Bibliografia 2. Systemy klasy Business Intelligence 3. Podejścia do integracji 4. Definicja hurtowni 5. Architektury hurtowni Hurtownie, wykład Bartosz Bębel E-mail:

Bardziej szczegółowo

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

Bezpieczeństwo dla wszystkich środowisk wirtualnych

Bezpieczeństwo dla wszystkich środowisk wirtualnych Bezpieczeństwo dla wszystkich środowisk wirtualnych SECURITY FOR VIRTUAL AND CLOUD ENVIRONMENTS Ochrona czy wydajność? Liczba maszyn wirtualnych wyprzedziła fizyczne już 2009 roku. Dzisiaj ponad połowa

Bardziej szczegółowo

TSMBOX. Backup Appliance Build for Recovery Speed. Przemysław Jagoda. Zbigniew Parys

TSMBOX. Backup Appliance Build for Recovery Speed. Przemysław Jagoda. Zbigniew Parys TSMBOX Backup Appliance Build for Recovery Speed Przemysław Jagoda Architekt Systemów Informatycznych Infonet Projekt S.A. Pamięci Masowe & Systemy Bezpieczeństwa Danych mail: p.jagoda@infonet-projekt.com.pl

Bardziej szczegółowo

NOWY OPIS TECHNICZNY PRZEDMIOTU ZAMÓWIENIA

NOWY OPIS TECHNICZNY PRZEDMIOTU ZAMÓWIENIA NOWY OPIS TECHNICZNY PRZEDMIOTU ZAMÓWIENIA Załącznik nr 4 do SIWZ/ załącznik do umowy Przedmiotem zamówienia jest dostawa 2 serwerów, licencji oprogramowania wirtualizacyjnego wraz z konsolą zarządzającą

Bardziej szczegółowo

Ekspert MS SQL Server Oferta nr 00/08

Ekspert MS SQL Server Oferta nr 00/08 Ekspert MS SQL Server NAZWA STANOWISKA Ekspert Lokalizacja/ Jednostka organ.: Pion Informatyki, Biuro Hurtowni Danych i Aplikacji Wspierających, Zespół Jakości Oprogramowania i Utrzymania Aplikacji Szczecin,

Bardziej szczegółowo

Analityka i BigData w służbie cyberbezpieczeństa

Analityka i BigData w służbie cyberbezpieczeństa Date Venue Next generation SOC Analityka i BigData w służbie cyberbezpieczeństa Tomasz Rostkowski Architekt - IBM Analytics Zagrożenia cyberprzestępczości...złe wieści Ewolucja centrów operacji bezpieczeństwa

Bardziej szczegółowo

Ogólny plan przedmiotu. Strony WWW. Literatura BAZY DANYCH. Materiały do wykładu: http://aragorn.pb.bialystok.pl/~gkret

Ogólny plan przedmiotu. Strony WWW. Literatura BAZY DANYCH. Materiały do wykładu: http://aragorn.pb.bialystok.pl/~gkret Ogólny plan przedmiotu BAZY DANYCH Wykład 1: Wprowadzenie do baz danych Małgorzata Krętowska Politechnika Białostocka Wydział Informatyki Wykład : Wprowadzenie do baz danych Normalizacja Diagramy związków

Bardziej szczegółowo

NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty legalności USERS Monitorowanie

NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty legalności USERS Monitorowanie www.axence.pl NETWORK Monitorowanie serwerów, urządzeń i aplikacji INVENTORY Inwentaryzacja sprzętu i oprogramowania, audyty legalności USERS Monitorowanie pracowników HELPDESK Zdalny dostęp, zgłoszenia

Bardziej szczegółowo

Organizacja zajęć BAZY DANYCH II WYKŁAD 1. Plan wykładu. SZBD Oracle 2010-10-21

Organizacja zajęć BAZY DANYCH II WYKŁAD 1. Plan wykładu. SZBD Oracle 2010-10-21 Organizacja zajęć BAZY DANYCH II WYKŁAD 1 Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.pl Liczba godzin i forma zajęć: 15 godzin wykładu oraz 30 godzin laboratorium Konsultacje:

Bardziej szczegółowo

Prezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl

Prezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy

Bardziej szczegółowo

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji 6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

Sekcja I: Instytucja zamawiająca/podmiot zamawiający

Sekcja I: Instytucja zamawiająca/podmiot zamawiający Unia Europejska Publikacja Suplementu do Dziennika Urzędowego Unii Europejskiej 2, rue Mercier, 2985 Luxembourg, Luksemburg Faks: +352 29 29 42 670 E-mail: ojs@publications.europa.eu Informacje i formularze

Bardziej szczegółowo

TABELA PORÓWNAWCZA OFEROWANEGO SPRZĘTU

TABELA PORÓWNAWCZA OFEROWANEGO SPRZĘTU Załącznik nr 6 do SIWZ TABELA PORÓWNAWCZA OFEROWANEGO SPRZĘTU Zadanie nr 1 - Budowa platformy wirtualizacji sieci 1. Wymagania oraz wymagane parametry dotyczące "Serwera 1 do budowy platformy wirtualizacji"

Bardziej szczegółowo

Efektywne zarządzanie infrastrukturą IT, inwentaryzacja sprzętu i oprogramowania oraz ochrona danych przed wyciekiem dzięki wdrożeniu Axence nvesion

Efektywne zarządzanie infrastrukturą IT, inwentaryzacja sprzętu i oprogramowania oraz ochrona danych przed wyciekiem dzięki wdrożeniu Axence nvesion Efektywne zarządzanie infrastrukturą IT, inwentaryzacja sprzętu i oprogramowania oraz ochrona danych przed wyciekiem dzięki wdrożeniu Axence nvesion 6.0 Maciej Kubat www.axencesoftware.com NETWORK Monitorowanie

Bardziej szczegółowo

ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT

ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT ROZWIĄZANIE BUSINESS INTELLIGENCE TARGIT Plan prezentacji Systemy Business Intelligence Architektura i funkcje systemu Targit Prezentacja na żywo: Dla zarządów i menedżerów Dla analityków i kontrolerów

Bardziej szczegółowo

LITERATURA. Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000

LITERATURA. Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000 LITERATURA Wprowadzenie do systemów baz danych C.J.Date; WNT Warszawa 2000 Systemy baz danych. Pełny wykład H. Garcia Molina, Jeffrey D. Ullman, Jennifer Widom;WNT Warszawa 2006 Wprowadzenie do systemów

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

Klastrowanie bazy IBM DB2. Adam Duszeńko

Klastrowanie bazy IBM DB2. Adam Duszeńko Klastrowanie bazy IBM DB2 Adam Duszeńko Typy klastrów Wydajnościowe Skalowalność Równoległość Obliczeń Składowania Wiele punktów dostępu Niezawodnościowe Bezpieczeństwo Zwielokrotnienie Danych Operacji

Bardziej szczegółowo

1. Instalacja jednostanowiskowa...3 2. Instalacja sieciowa...4 3. Instalacja w środowisku rozproszonym...5 4. Dodatkowe zalecenia...

1. Instalacja jednostanowiskowa...3 2. Instalacja sieciowa...4 3. Instalacja w środowisku rozproszonym...5 4. Dodatkowe zalecenia... SYBILLA WYMAGANIA TECHNICZNE 1. Instalacja jednostanowiskowa...3 2. Instalacja sieciowa...4 3. Instalacja w środowisku rozproszonym...5 4. Dodatkowe zalecenia...6 1998 2005 TELEPORT.PL WYMAGANIA TECHNICZNE

Bardziej szczegółowo

Monitorowanie aplikacji i rozwiązywanie problemów

Monitorowanie aplikacji i rozwiązywanie problemów Monitorowanie aplikacji i rozwiązywanie problemów 21 Maj 2015, Poznań Adrian TUROWSKI adrian.turowski@passus.com.pl Agenda Po co monitorować aplikacje sieciowe? Sposoby monitorowania SPAN vs. Netflow.

Bardziej szczegółowo

Nowoczesny dział IT w chmurze

Nowoczesny dział IT w chmurze Nowoczesny dział IT w chmurze Czyli o tym, jak IT może się stać bohaterem biznesu Dariusz Nawojczyk, Maciej Kuźniar 28 lutego 2013 r. Warszawa 1 DLACZEGO CHMURA OBLICZENIOWA JEST REWOLUCJĄ? Punkt zwrotny.

Bardziej szczegółowo

Zunifikowna Komunikacja

Zunifikowna Komunikacja Zunifikowna Komunikacja jako element usprawniający funkcjonowanie Administracji Samorządowej Adam Dolega Architekt Rozwiązań Biznesowych, Microsoft adam.dolega@microsoft.com Szybka i łatwa komunikacja

Bardziej szczegółowo

Big Data & Analytics

Big Data & Analytics Big Data & Analytics Optymalizacja biznesu Autor: Wiktor Jóźwicki, Scapaflow Senior Consultant Data wydania: 05.02.2014 Wprowadzenie Niniejszy dokument przedstawia zagadnienie Big Data w ujęciu zapotrzebowania

Bardziej szczegółowo

Investing f or Growth

Investing f or Growth Investing for Growth Open Business Solution OB One - zintegrowane oprogramowanie modułowe wspomagające zarządzanie firmą w łatwy i przejrzysty sposób pozwala zaspokoić wszystkie potrzeby księgowe, administracyjne

Bardziej szczegółowo

IBM POWER8 dla SAP HANA

IBM POWER8 dla SAP HANA IBM POWER8 dla SAP HANA SUCCESS STORY Efektywność Innowacyjność Bezpieczeństwo Success Story Pierwsze wdrożenie w Polsce Dzięki współpracy firm itelligence, COMPAREX oraz IBM została zaprojektowana i zrealizowana

Bardziej szczegółowo

Analityka predykcyjna w marketingu i sprzedaży

Analityka predykcyjna w marketingu i sprzedaży Analityka predykcyjna w marketingu i sprzedaży Marcin Górzyński Partner Zarządzający Jędrzej Traczykowski Partner Zarządzający Czym jest data mining i analizy predykcyjne? Analiza dużej ilości danych w

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 1/15

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 1/15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 1/15 Literatura obowiązkowa Elmasri R., Navathe S., Wprowadzenie do systemów baz danych. Wyd. Helion, 2005

Bardziej szczegółowo

Pakiet dla Efektywności Energetycznej

Pakiet dla Efektywności Energetycznej Pakiet dla Efektywności Energetycznej Przegląd systemu 2/28/2012 Aplikacje dla spółek energetycznych Audyt Energetyczny Zużycie Mediów Budynki i Instalacje Monitoring Billing Energia elektryczna Multimedia

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Business Intelligence

Business Intelligence Business Intelligence Business Intelligence nowe podejście do zarządzania Szybka i właściwa reakcja na zmienne preferencje klientów, działania konkurencji i zmiany na rynku oto jeden z najważniejszych

Bardziej szczegółowo

Światowej klasy Zarządzanie Produkcją

Światowej klasy Zarządzanie Produkcją Światowej klasy Zarządzanie Produkcją Release 5: Rewolucyjna fabryka przyszłości Światowej klasy zarządzanie produkcją @ 汉 语 Światowej klasy zarządzanie produkcją FORCAM Release 5 Rewolucyjna fabryka przyszłości

Bardziej szczegółowo

Koniec problemów z zarządzaniem stacjami roboczymi BigFix. Włodzimierz Dymaczewski, IBM

Koniec problemów z zarządzaniem stacjami roboczymi BigFix. Włodzimierz Dymaczewski, IBM Koniec problemów z zarządzaniem stacjami roboczymi BigFix Włodzimierz Dymaczewski, IBM Dlaczego zarządzanie stacjami roboczymi sprawia tyle problemów? Na ogół duŝa ilość Brak standardu konfiguracji Wielka

Bardziej szczegółowo

Zaawansowane bazy danych i hurtownie danych Wydział Informatyki Politechnika Białostocka

Zaawansowane bazy danych i hurtownie danych Wydział Informatyki Politechnika Białostocka Zaawansowane bazy danych i hurtownie danych Wydział Informatyki Politechnika Białostocka wiosna 2014 Prowadzący: Agnieszka Oniśko-Drużdżel, Marek J. Drużdżel pokój: 207, Wiejska 45A telefon: 85-746 9086

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Wstęp do problematyki baz danych Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. I Jesień 2014 1 / 17 Plan wykładu 1 Bazy danych 1 Motywacja

Bardziej szczegółowo

Praca przejściowa. Sklep internetowy. Tomasz Konopelski ZIP50-IWZ Katowice 2006

Praca przejściowa. Sklep internetowy. Tomasz Konopelski ZIP50-IWZ Katowice 2006 Praca przejściowa Sklep internetowy Tomasz Konopelski ZIP50-IWZ Katowice 2006 Polski e-commerce Badania rynku Badaniem, które odbyło się w październiku 2001 roku objęto 300 przedsiębiorstw a ich dobór

Bardziej szczegółowo