Laboratorium - biotechnologia ogólna - dla studentów kierunku biotechnologia od 2014/2015 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium - biotechnologia ogólna - dla studentów kierunku biotechnologia od 2014/2015 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO"

Transkrypt

1 Destylacja Destylacja polega na przemianie substancji w stan pary i następnym jej skropleniu w innym już miejscu po przeprowadzeniu przez aparaturę chłodzącą. Podstawowym warunkiem zastosowania tej metody jest możliwość przejścia oczyszczanej substancji w stan pary bez jednoczesnego rozkładu. I tak, destylację pod zwykłym ciśnieniem stosuje się wyłącznie do substancji o niewielkich cząsteczkach, których temperatura wrzenia leży poniżej C. Dla substancji wysokowrzących stosuje się destylację pod zmniejszonym ciśnieniem. Substancje stałe destyluje się z reguły pod zmniejszonym ciśnieniem lub z parą wodną. Temperatura wrzenia jest, jak wiadomo, temperaturą, w której prężność pary substancji osiąga wartość ciśnienia atmosferycznego. Zmiana temperatury wrzenia w toku destylacji dowodzi, że substancja nie jest czysta i mamy do czynienia z mniej lub bardziej złożoną mieszaniną. Destylacja z parą wodną jest wygodną metodą oczyszczania substancji stałych i ciekłych nie mieszających się z wodą, lotnych zaś z parą wodną, tzn. wykazujących w temperaturze bliskiej 100 C dość znaczną prężność pary (co najmniej 6,5-13 hpa). Ponieważ woda i destylowany składnik A nie mieszają się ze sobą, ogólna prężność par, zgodnie z prawem Daltona, jest sumą prężności cząstkowych. P = P W + P A Ponieważ ciecz zaczyna wrzeć, gdy prężność jej par osiągnie wartość ciśnienia atmosferycznego panującego w danej chwili, przeto prężność par rozważanej mieszaniny osiąga wartość ciśnienia atmosferycznego w temperaturze niższej od temperatury wrzenia każdego z jej składników. Z tego wynika, że dopóki istnieją obie fazy ciekłe, destylat będzie miał stały skład, a temperatura wrzenia będzie niższa niż każdego ze składników osobno. Stosuje się więc tę metodę do destylacji cieczy lub ciał stałych (niskotopliwych) o wysokich temperaturach wrzenia lub do wydzielania lotnego z parą wodną składnika ze złożonych mieszanin. Przykładem takiego zastosowania może być wyodrębnianie olejków eterycznych z materiałów roślinnych. Destylacja z parą wodną pozwala ponadto w łatwy sposób: - oddzielić produkt od nielotnych produktów smolistych. - wydzielić związek organiczny z wodnych roztworów soli nieorganicznych. - oddzielić wiele substancji organicznych lotnych z para wodną od związków organicznych nielotnych z para wodną. Jeśli destyluje się z parą wodną znaczne ilości substancji, to parę wodną wytwarza się i doprowadza do układu z kociołka z podgrzewaną wodą (patrz rysunek obok), natomiast przy niewielkiej ilości destylowanej substancji wystarczy dodać do kolby z destylowaną substancją wystarczającą ilość wody i energicznie ogrzewając, prowadzić destylację poprzez łapacz kropel, co przedstawiono poniżej po prawej stronie Minusem destylacji z parą wodną jest konieczność oddzielenia właściwego destylatu od wody, co w przypadku ciał stałych jest proste (odsączenie i wysuszenie) natomiast w przypadku cieczy wymaga dość pracochłonnej ekstrakcji. Zestaw aparatury do destylacji z parą wodną przedstawiono na rysunku obok. 1 - wytwornica pary wodnej, 2 - chłodnica, 3 - kolba destylacyjna, 4 - przedłużacz, 5 - odbieralnik, 6 - rurka bezpieczeństwa. Inny wariant destylacji próbki surowca z wodą przeprowadza się w aparacie Derynga o zamkniętym obiegu wody. Wydzielony olejek zbiera się na powierzchni wody w odbieralniku. Aparat składa się z kolby szklanej i części zasadniczej. Część zasadnicza to kolumna destylacyjna, chłodnica i odbieralnik, który przez trójdrożny kurek i rurkę przepływową łączy się z kolumną destylacyjną tworząc zamknięty obieg wody. Kolumna zawęża rurkę i ta rurka kondensacyjna przechodzi poniżej chłodnicy w część kalibrowaną, stanowiącą odbieralnik. Górna, szersza część odbieralnika jest opatrzona podziałką co 0,1 ml, dolna, zwężona natomiast jest skalibrowana co 0,01 ml. Rurka odbieralnika zakończona jest trójdrożnym kurkiem, który z jednej strony łączy się z rurką przepływową, prowadzącą do kolumny destylacyjnej, a z drugiej strony ma krótką rurkę odpływową. Po zakończeniu oznaczenia resztki olejku usuwa się przepłukując aparat gorącą wodą, następnie etanolem lub acetonem. Schemat aparatu Derynga przedstawiono na rysunku obok. Ekstrakcja Ekstrakcja (z łaciny: extraho = wyciągam) jest to metoda wyodrębniania z mieszaniny ciał stałych lub cieczy jakiegoś składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał przede wszystkim żądany związek. Chemicy stosują tę metodę do otrzymania związków naturalnych z materiału roślinnego (liści, kory itp.). Wszyscy korzystamy z tej metody np. przy parzeniu kawy. W syntezie organicznej produkt reakcji otrzymywany jest często wraz z innymi związkami w postaci roztworu lub zawiesiny w wodzie. Podczas wytrząsania takiej mieszaniny z nie mieszającym się z wodą rozpuszczalnikiem, produkt reakcji ulega ekstrakcji i może być następnie odzyskany przez odparowanie rozpuszczalnika. Ekstrakcja związku z jednej

2 fazy ciekłej do drugiej jest procesem ustalania się równowagi zależnym od rozpuszczalności związku w obu rozpuszczalnikach. Stosunek stężenia w jednym rozpuszczalniku do stężenia w drugim nosi nazwę współczynnika podziału i jest wielkością stałą w danej temperaturze, charakterystyczną dla danej substancji i określonej pary rozpuszczalników (prawo Nernsta). C A C B = constans = K gdzie: C A i C B stanowią stężenia substancji w rozpuszczalnikach A i B; K współczynnik podziału Można przyjąć, że w przybliżeniu współczynnik podziału jest równy stosunkowi rozpuszczalności danej substancji w obu rozpuszczalnikach. Związki organiczne są zwykle lepiej rozpuszczalne w rozpuszczalnikach organicznych niż w wodzie i dlatego mogą one być ekstrahowane z roztworów wodnych. Jeżeli substancja rozpuszczona ulega w którejkolwiek z faz reakcjom chemicznym, takim jak asocjacja, dysocjacja, hydroliza czy solwatacja (czyli zmienia się jej stężenie) wyznaczenie współczynnika podziału jest trudne. Z tych samych przyczyn, w większości układów prawo podziału nie jest spełniane. Dlatego w praktyce wyznaczamy globalny, stechiometryczny rozdział interesującego nas składnika pomiędzy fazy (na który ma wpływ współoddziaływanie rozdzielanej substancji z innymi składnikami), zwany współczynnikiem ekstrakcji D. D = C 2 C1 gdzie: C 1 i C 2 - całkowite stężenie substancji w fazie 2 i fazie 1. Współczynnik ekstrakcji jest wielkością zależną od stężenia (nieliniowa izoterma podziału) ponieważ równowaga asocjacji i dysocjacji poważnie wpływa na podział. Można zapobiec nieliniowej izotermie podziału stosując odpowiednio dobraną parę rozpuszczalników, które utrzymywałyby stały stosunek zasocjowanych lub zdysocjowanych cząsteczek do cząsteczek pojedynczych lub niezdysocjowanych. Gdy ekstrahowana substancja nie podlega żadnym reakcjom w obydwu fazach, współczynnik ekstrakcji D jest równy współczynnikowi podziału K. Ekstrakcja periodyczna (nieciągła) polega na rozdziale substancji pomiędzy dwa nie mieszające się rozpuszczalniki, przez wytrząsanie obu warstw ciekłych, aż do osiągnięcia stanu równowagi pomiędzy stężeniami rozdzielanej substancji w obu rozpuszczalnikach. Do ekstrakcji i rozdzielania warstw nie mieszających się ze sobą cieczy używa się rozdzielaczy. Do ekstrakcji roztworów wodnych używa się rozpuszczalników o mniejszej gęstości (np. eter dietylowy) lub większej gęstości niż woda (np. chloroform lub chlorek metylenu) Dla uzyskania jak najpełniejszej ekstrakcji przy określonej ilości rozpuszczalnika powinno stosować się możliwie małe ilości rozpuszczalnika tworzącego fazę 2, a operację ekstrakcji powtarzać wielokrotnie. Przy wielokrotnym wytrząsaniu mniejszymi porcjami rozpuszczalnika uzyskuje się o wiele lepszy rozdział rozpuszczonej substancji niż przy jednorazowej ekstrakcji taką samą ilością rozpuszczalnika. Ekstrakcja ciągła - technikę ekstrakcji ciągłej stosuje się w przypadku układów o małych współczynnikach ekstrakcji. Zastosowanie w tym przypadku ekstrakcji nieciągłej wymagałoby użycia dużych ilości rozpuszczalnika. Istotną wadą tego sposobu ekstrakcji jest bardzo duże zużycie ekstrahenta i odpowiednio małe średnie stężenie ekstraktu, stanowiącego mieszaninę cieczy ze stopniowo zmniejszającym się stężeniem substancji ekstrahowanej. Utrudnia to regenerację ekstrahenta i wydzielenie usuwanej z surówki ekstrakcyjnej substancji. Ekstrakcję w układzie ciało stałe-ciecz przeprowadza się kiedy trzeba wyekstrahować z ciała stałego jego składnik rozpuszczalny w jakimś rozpuszczalniku. Ten typ ekstrakcji nazywa się ługowaniem. Ekstrakcja ciało stałe-ciecz jest podstawowym procesem do wyodrębniania związków organicznych z surowców roślinnych. Polega ona na wybiórczym rozpuszczaniu substancji znajdującej się w stałej próbce. W takiej sytuacji przenoszenie substancji do roztworu zależy głównie od rozpuszczalności substancji w danym rozpuszczalniku. W większości przypadków ekstrakcja z ciał stałych jest operacją wymagającą znacznych ilości czasu, dlatego najbardziej korzystny jest ciągły sposób jej realizacji. Najczęściej stosowanym aparatem do ekstrakcji w układzie ciało stałe-ciecz jest aparat Soxhleta. Otrzymywanie ekstraktów roślinnych W ostatnich latach obserwuje się rosnącą liczbę nowych produktów kosmetycznych, w których podstawowymi składnikami aktywnymi są substancje pochodzenia roślinnego. Ich zastosowanie w kosmetyce pielęgnacyjnej zmierza w dwu kierunkach. Pierwszy z nich to wykorzystanie ich właściwości jako substancji aktywnych wpływających na stan, wygląd i zdrowie skóry. Drugi to oddziaływanie na ogólny stan psychiczny i pośrednio fizyczny człowieka. Poza samymi roślinami (ziołami, owocami, liśćmi, korzeniami) stosowanymi w stanie naturalnym, lub w formie rozdrobnionej, już od czasów prehistorycznych wytwarzano produkty kosmetyczne w formie wydzielanych z roślin ich składników. Charakter preparatów roślinnych jak również metody wydzielania pozwalają na próbę dokonania podziału na kilka grup, różniących się składem i przeznaczeniem. Do najstarszych należą niewątpliwie oleje roślinne stosowane zarówno do celów spożywczych jak i pielęgnacyjnych. Generalnie oleje otrzymuje się z roślin przez wytłaczanie, ale również spotyka się oleje otrzymywane metodą ekstrakcji. Liczba stosowanych w kosmetyce olejów roślinnych rośnie bardzo szybko. Pestki wszystkich powszechnie znanych owoców, wszystkie nasiona i dziesiątki innych materiałów roślinnych są wytłaczane lub ekstrahowane w celu uzyskania tłuszczów o coraz ciekawszych właściwościach kosmetycznych. Druga grupa preparatów to olejki eteryczne i różnorodne ekstrakty. Warto tutaj wyjaśnić różnice między wyżej wymienionymi terminami:

3 - olejki eteryczne to mieszaniny lotnych substancji (zapachowych i biologicznie czynnych) otrzymywanych przez destylację surowca roślinnego z para wodną lub przez wyciskanie (np. skórki owoców cytrusowych). Takie produkty nie mogą zawierać żadnych innych składników niż te, które pochodzą z surowca. Podobne składniki można otrzymać metodą podwójnej ekstrakcji (rozpuszczalnikiem organicznym niepolarnym i po jego usunięciu z otrzymanego konkretu rozpuszczalnikiem polarnym najczęściej etanolem), która daje produkt zwany absolutem. Ten zazwyczaj zawiera resztki rozpuszczalników używanych w procesie, a często w celu poprawienia konsystencji dodany na końcu procesu rozpuszczalnik organiczny. - ekstraktem najpowszechniej nazywa się produkt otrzymany poprzez wymywanie pożądanych składników z surowca roślinnego przy pomocy rozpuszczalnika, na ogół organicznego, a następnie usunięciu rozpuszczalnika. W niektórych przypadkach dla uzyskania odpowiedniej konsystencji pozostawia się część rozpuszczalnika. Konsystencja zależy od charakteru ekstrahowanych składników (i ilości pozostawionego rozpuszczalnika) może być płynna, półpłynna lub stała (ekstrakty suche). - wyciągi natomiast to ekstrakty, w których pozostawiono cały lub większość rozpuszczalnika użytego do ekstrakcji. Najczęściej dotyczy to ekstraktów wodnych, alkoholowych lub alkoholowo-wodnych, ale także glicerynowych, glikolowych, olejowych. - Budowa i występowanie olejków eterycznych W naszym klimacie olejki eteryczne najczęściej pozyskuje sie z roślin należących do następujących rodzin: baldaszkowatych (Umbelliferae), - krzyżowych (Cruciferae), - liliowatych (Liliaceae), - różowatych (Rosceae), - wargowych (Labiatae), - złożonych (Compositae). Olejki wytwarzane są w wyspecjalizowanych tkankach wydzielniczych. W komórce powstają tylko w cytoplazmie przy udziale struktur Golgiego i retikulum endoplazmatycznego. Są one uważane za końcowe produkty przemiany materii. Gęstość właściwa większości olejków jest mniejsza niż wody. W temperaturze pokojowej olejki maja zwykle konsystencje płynna, rzadziej mazista, a wyjątkowo zestalają sie (olejek anyżowy). Najczęściej są bezbarwne, ale mogą być lekko _żółte, brunatnawe, błękitne i zielone. Bardzo słabo rozpuszczają sie w wodzie, natomiast stosunkowo łatwo rozpuszczają sie w tłuszczach, rozpuszczalnikach organicznych oraz innych olejkach eterycznych. Olejki są optycznie czynne - prawo- i lewoskrętne. Temperatury wrzenia mieszczą sie zwykle w przedziale C. W temperaturze poniżej 0 0 C niektóre olejki eteryczne wydzielają związki stałe, najczęściej w postaci krystalicznej, które zwane są stearoptenami. Na przykład z olejku miętowego uzyskuje sie w ten sposób mentol, z olejku anyżowego - anetol, z kamforowego - kamforę. Jeden olejek przeważnie składa sie z kilkudziesięciu związków o różnym stężeniu, pochodzeniu i charakterze biogenetycznym. Najważniejsze składniki olejków eterycznych należą do związków terpenowych i ich pochodnych. W ich składzie można ponadto spotkać inne niż terpeny substancje zapachowe, np. - estry (octan linalilu), - alkohole (benzylowy, fenylowy), - aldehydy (cynamonowy, benzoesowy), - ketony (iron), - fenole (tymol), - etery (anetol, eugenol), - węglowodory, - kumaryny, - kwasy organiczne. Skład olejku zależy też od części rośliny, z których jest otrzymywany. W przypadku drzewa cynamonowego, głównym składnikiem olejku eterycznego zawartego w liściach jest eugenol, podczas gdy w olejku z kory dominuje aldehyd cynamonowy. Charakterystyka niektórych olejków eterycznych Występowanie Zapach Główny składnik Aktywność aromatoterapeutyczna Skórka cytryny cytrynowy D-limonen, cytral bakteriobójcza Igły jodły pospolitej balsamiczny pinen, limonen infekcje górnych dróg oddechowych Skórka pomarańczy słodkiej pomarańczowy nerol, limonen Ziele mięty pieprzowej miętowy mentol, menton Nasiona kminku kminkowy karwon, limonen łagodząca antydepresyjna, lekko uspokajająca antyseptyczna, łagodząca, stymulująca trawienie, znieczulająca

4 Płatki kwiatów róży damasceńskiej różany geraniol, cytronelol, alkohol fenyloetylowy stymulująca, afrodyzjalna, antyinfekcyjna Igły sosny żywiczny pinen, kareny,kadiden antyseptyczna, immunostymulująca Nasiona lawendy lawendowy octan linalilu, geraniol Liście eukaliptusa Ziele szałwi orzeźwiający gorzko ziołowy eukaliptol, cyneol, pinen, kamfen β-tujon, pinen, salwen, kamfen, borneol stymulująca, uspokajająca, antyseptyczna, przeciwgrzybicza, przeciwbólowa przeciwbakteryjna, przeciwwirusowa, łagodząca, pobudzająca, przeciwbólowa stymulująca, łagodząca depresje, ułatwiająca oddychanie Ziele tymianku tymolowy tymol immunostymulująca, pobudzająca Związki terpenowe Terpenami nazywamy naturalne węglowodory pochodzenia głównie roślinnego o ogólnym wzorze (C 5H 8) n, będące oligomerami izoprenu (2-metylobuta-1,3-dienu). W zależności od stopnia polimeryzacji n (n liczba jednostek izoprenowych), wyróżnia się: - hemiterpeny, n=1, - monoterpeny (terpeny), C 10H 16, n=2, - seskwiterpeny, C 15H 24, n=3, - diterpeny, C 20H 32, n=4, - sesterterpeny, C 25H 40, n=5, - triterpeny, C 30H 48, n=6, - tetraterpeny, C 40H 64, n=8, - politerpeny, n>8 Hemiterpeny - kwas metyloetylooctowy z olejku arcydzięglowego - kwas izowalerianowy z olejku walerianowego - alkohol izoamylowy z olejku miętowego - prenol z olejku kopru włoskiego cytronelol Monoterpeny W olejkach monoterpeny stanowią najliczniejsza grupę związków. Są one bardzo lotne i maja intensywny zapach. Związki te charakteryzują sie dużą różnorodnością struktur związanych z możliwością cyklizacji, obecności podwójnych wiązań, izomerii strukturalnej i optycznej. Ze względu na budowę monoterpeny oraz ich pochodne (najczęściej tlenowe), czyli monoterpenoidy, można podzielić na niecykliczne, jednopierścieniowe, i dwupierścieniowe. Ze względu na stopień utlenienia w wymienionych monoterpenach i monoterpenoidach można wyróżnić węglowodory, alkohole, aldehydy, ketony, kwasy, estry i tlenki. Monoterpeny acykliczne - cytronelol olejek różany i pelargoniowy - geraniol olejek różany, pelargoniowy i cytrynowy Monoterpeny jednopierścieniowe - limonen - olejek pomarańczowy, cytrynowy, kminkowy, świerkowy, jodłowy - α-terpinen składnik olejku kolendrowego i pomarańczowego - mentol składnik olejku mięty pieprzowej Monoterpeny dwupierścieniowe Stanowią jedną z najbardziej zróżnicowanych grup terpenoidów i dzielą się pod względem budowy szkieletu węglowego na siedem głównych grup. Najważniejsze to: - grupa tujanu - α-tujon olejek tujowy i ziele piołunu - grupa karanu 3-karen olejek sosnowy - grupa pinenu kamfora olejek kamforowy α-tujon Seskwiterpeny Stanowią dużą grupę związków. Są gęstymi lepkimi cieczami lub substancjami stałymi, wrzącymi powyżej C, nie rozpuszczają sie w wodzie, natomiast łatwo ulęgają rozpuszczeniu w rozpuszczalnikach organicznych. Większość z nich jest trudno lotna lub

5 nielotna. Możemy wśród nich wyróżnić związki acykliczne, monocykliczne, dwucykliczne i trójcykliczne. Przykłady seskwiterpenów to: - farnezol składnik olejku konwaliowego, lipowego, muszkatołowego, akacjowego - bisabolen - z olejku bergamotowego oraz roślin cytrusowych - kadiden olejek sosnowy. ZWIAZKI AROMATYCZNE wchodzące w skład olejków eterycznych to węglowodory aromatyczne i ich pochodne, fenole i ich pochodne oraz heterocykliczne pochodne związków aromatycznych. Bardzo często są one syntetyzowane z jednostek izoprenoidowych (tak jak terpenoidy) a nie w przemianach pierścienia aromatycznego. - węglowodory aromatyczne - na uwagę zasługują tutaj alkohol i aldehyd kuminowy, istotne składniki olejku otrzymywanego z kminu rzymskiego, aldehyd anyżowy oraz główne składniki olejku cynamonowego (alkohol, aldehyd i kwas cynamonowy). - fenole i ich pochodne - przykładem fenoli jednowodorotlenowych są anetol oraz estragol składniki olejku estragonowego a także tymol składnik olejku tymiankowego. Do fenoli dwuwodorotlenowych należy eugenol składnik ziela angielskiego i liści laurowych. Chromatografia cienkowarstwowa TCL Różne techniki chromatograficzne wykorzystują dwa zjawiska: podziału substancji między dwie różne fazy ciekłe obowiązuje tu prawo podziału Nernsta i adsorpcji substancji na nośniku, czyli fazie stałej. Znana od kilkudziesięciu lat chromatografia cienkowarstwowa TLC (z angielskiego: thin layer chromatography) łączy w sobie obydwa te zjawiska, gdyż polega ona na poruszaniu się substancji organicznych z różną prędkością wraz z ruchomą fazą ciekłą przez cienką warstwę stałego adsorbenta naniesionego na płytkę szklaną, blaszkę aluminiową lub podłoże plastikowe. Towarzyszą temu procesy adsorpcji i desorpcji oraz podział między ciekłą fazę organiczną i wodę, która w niewielkich ilościach znajduje się na nośniku. Różnicowanie nośników (np. tlenek glinu, żel krzemionkowy, celuloza) oraz rozpuszczalników (lub ich kombinacji), czyli tzw. układów rozwijających, pozwala na rozdział mieszanin związków oraz ich identyfikację. Sposób postępowania w analitycznej chromatografii cienkowarstwowej jest prosty. Polega on na naniesieniu kapilarą roztworów badanych substancji na płytki pokryte adsorbentem w odległości około 1 cm od brzegu płytki, którą następnie zanurza się tym końcem w niewielkiej ilości rozpuszczalnika umieszczonego w zamykanej komorze rozwijającej, której ścianki wyłożone są bibułą. Wznoszący się rozpuszczalnik rozwija chromatogram. W momencie kiedy czoło rozpuszczalnika osiągnie zaznaczoną wcześniej na płytce linię mety, wyjmuje się płytkę z komory, suszy ją i analizuje chromatogram. Jeśli rozdział dotyczy substancji barwnych, ich plamki na chromatogramie są łatwo dostrzegalne. W przypadku substancji bezbarwnych, plamki chromatogramu wywołuje się np. przez spryskiwanie płytki substancjami dającymi ze związkami badanymi reakcje barwne (np. kwasem siarkowym(vi)), przez umieszczenie płytki w komorze wypełnionej parami jodu, które zabarwiają plamki lub obserwację płytek w świetle ultrafioletowym wywołującym fluorescencję. Poniższy rysunek przedstawia kolejne etapy wykonywania chromatogramu. Substancje naniesione na płytkę Rozwijanie chromatogramu Chromatogram rozwinięty Wielkością charakteryzującą przesuwanie się badanej substancji w systemie adsorbent układ rozwijający, czyli położenie plamki na chromatogramie, jest współczynnik R f definiowany następująco: droga przebyta przez substancję R f = droga przebyta przez rozpuszczalnik Poniższy rysunek przedstawia sposób obliczania współczynnika R f dla dwóch substancji. Po prawej stronie przedstawiony jest nieprawidłowo wykonany chromatogram, gdy stężenie substancji naniesionej na płytkę było zbyt wysokie. W tej sytuacji niemożliwe jest wyliczenie współczynników R f. W przypadkach skrajnych R f może być równy 0 oznacza to, że substancja jest całkowicie adsorbowana i pozostaje na starcie, lub R f może być równy 1, co oznacza, że substancja nie jest adsorbowana, porusza się z czołem rozpuszczalnika. W praktyce analitycznej należy unikać takich skrajności. Na współczynnik R f mają wpływ: rodzaj, aktywność i struktura adsorbentów, układy rozwijające, nasycenie komory oraz temperatura. Korzyści, które płyną z zastosowania chromatografii cienkowarstwowej, a więc np. ostrość rozdziału, duża czułość i szybkość tej techniki, powodują, że znajduje ona szerokie zastosowanie w praktyce laboratoryjnej.

6 czoło rozpuszczalnika substancja 1 substancja 2 start R f1 = d 1 f R f2 = d 2 f Nieprawidłowo wykonany chromatogram Wykonanie ćwiczenia. 1. Otrzymywanie olejków eterycznych metodą destylacji z parą wodną 1.1. Zestawić aparaturę (aparat Derynga) Do kolby o pojemności 500 cm 3 wsypać rozdrobniony i uprzednio zważony materiał roślinny Dokładnie odważyć próbkę surowca (skórka pomarańczy lub cytryny, melisa, lawenda, mięta, płatki kwiatów) g i natychmiast umieścić w kolbie o pojemności 500 cm 3. Całość zalać wodą destylowaną w ilości ml Kolbę połączyć z aparatem Derynga, napełnić odbieralnik wodą, włączyć chłodzenie i ogrzewać 1-2 godziny Po zakończeniu destylacji chłodzenie wyłączyć, olejek sprowadzić na mikroskali i odczytać otrzymany wynik Odczytana ilość olejku przeliczyć na 100 gramów surowca roślinnego Rozmontować aparaturę i umyć szkło Uzyskany olejek eteryczny zlać delikatnie do probówki. 2. Określanie czystości uzyskanego olejku 2.1. Dokonać pomiaru współczynnika refrakcji (n 20 D) w refraktometrze PAL-BR/RI. Kalibrację refraktometru wykonujemy wodą destylowaną. Niewielką ilość wody (ok. 0,3ml) nanosimy na okienko pomiarowe i naciskamy przycisk START urządzenie powinno wskazać 0,0%, jeżeli nie naciskamy przycisk ZERO. Po kalibracji wodę usuwamy bibułą. Następnie nanosimy badaną próbę: krótkie naciśnięcie przycisku START - pomiar w skali %Brix, 2 sekundowe przytrzymanie przycisku START pomiar w współczynnika refrakcji n 20 D. Wyłączenie urządzenia przytrzymanie przycisku START 4s. Po wykonaniu pomiaru urządzenie dobrze przemyć wodą destylowaną i osuszyć bibułą Wykonanie chromatografii cienkowarstwowej uzyskanego olejku Dla uzyskanego olejku wykonać chromatografię cienkowarstwową. Na otrzymanej od prowadzącego płytce zaznaczyć ołówkiem linię startu i mety. Na linię startu nanieść 10µl uzyskanego olejku oraz wzorca (otrzymanego od prowadzącego), wysuszyć i rozwijać w mieszaninie chloroform: benzen (3: 1). Położenie plamek zaobserwować pod lampą UV i zaznaczyć na płytce ołówkiem. Zmierzyć linijka drogę przebytą przez rozpuszczalnik, olejek i otrzymany wzorzec. 3. Opracowanie wyników - Przedstawić opis doświadczenia w zeszycie wraz z rysunkiem aparatu Derynga i z charakterystyką otrzymanego materiału roślinnego. - Podać ilość wydzielonego podczas destylacji olejku eterycznego w przeliczeniu na 100 g materiału roślinnego i jego współczynnik refrakcji. - Przerysować do zeszytu płytkę chromatograficzną. Obliczyć i porównać współczynniki R f dla otrzymanego olejku i wzorca. 4. Materiały do ćwiczeń, które zapewnia student!!!! Materiał roślinny do otrzymywania olejku: skórka pomarańczy lub cytryny, melisa, lawenda, mięta, płatki kwiatów 5. Literatura - Koźmińska-Kubarska A., Zarys kosmetyki lekarskiej, PZWL, Fengier W., Szeląg P., Chemia kosmetyczna, Arct J., O kosmetykach, WTN, 1987.

DWICZENIE 9 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

DWICZENIE 9 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO 1. Destylacja Destylacja polega na przemianie substancji w stan pary i następnym jej skropleniu w innym już miejscu po przeprowadzeniu przez aparaturę chłodzącą. Podstawowym warunkiem zastosowania tej

Bardziej szczegółowo

IZOLACJA OLEJKÓW ETERYCZNYCH

IZOLACJA OLEJKÓW ETERYCZNYCH IZOLACJA OLEJKÓW ETERYCZNYCH Destylacja i ekstrakcja Destylacja jest bardzo użyteczną metodą rozdziału wieloskładnikowych mieszanin ciekłych, a tym samym oczyszczania substancji lotnych. Polega ona na

Bardziej szczegółowo

IZOLACJA OLEJKÓW ETERYCZNYCH

IZOLACJA OLEJKÓW ETERYCZNYCH IZOLACJA OLEJKÓW ETERYCZNYCH Destylacja i ekstrakcja Destylacja jest bardzo użyteczną metodą rozdziału wieloskładnikowych mieszanin ciekłych, a tym samym oczyszczania substancji lotnych. Polega ona na

Bardziej szczegółowo

Laboratorium - biotechnologia ogólna - dla studentów kierunku biotechnologia wersja 1.2 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO

Laboratorium - biotechnologia ogólna - dla studentów kierunku biotechnologia wersja 1.2 IZOLOWANIE OLEJKÓW ETERYCZNYCH Z MATERIAŁU ROŚLINNEGO Destylacja Destylacja polega na przemianie substancji w stan pary i następnym jej skropleniu w innym już miejscu po przeprowadzeniu przez aparaturę chłodzącą. Podstawowym warunkiem zastosowania tej metody

Bardziej szczegółowo

WYDZIELANIE OLEJKÓW ETERYCZNYCH Z SUROWCÓW ROŚLINNCH

WYDZIELANIE OLEJKÓW ETERYCZNYCH Z SUROWCÓW ROŚLINNCH WYDZIELANIE OLEJKÓW ETERYCZNYCH Z SUROWCÓW ROŚLINNCH Określenie substancja zapachowa jest stosowane w odniesieniu do czystych związków chemicznych, wywołujących wrażenie węchowe (wonne substancje chemiczne)

Bardziej szczegółowo

WYDZIELANIE OLEJÓW ETERYCZNYCH Z SUROWCÓW ROŚLINNCH

WYDZIELANIE OLEJÓW ETERYCZNYCH Z SUROWCÓW ROŚLINNCH WYDZIELANIE OLEJÓW ETERYCZNYCH Z SUROWCÓW ROŚLINNCH Określenie substancja zapachowa jest stosowane w odniesieniu do czystych związków chemicznych, wywołujących wrażenie węchowe (wonne substancje chemiczne)

Bardziej szczegółowo

Ćwiczenie 2. Ekstrakcja

Ćwiczenie 2. Ekstrakcja Ćwiczenie 2 Ekstrakcja Ekstrakcja (z łaciny: extraho = wyciągam) jest to metoda wyodrębniania z mieszaniny ciał stałych lub cieczy jakiegoś składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał

Bardziej szczegółowo

ROZDZIELANIE I OCZYSZCZANIE SUBSTANCJI. EKSTRAKCJA.

ROZDZIELANIE I OCZYSZCZANIE SUBSTANCJI. EKSTRAKCJA. ROZDZIELANIE I OCZYSZCZANIE SUBSTANCJI. EKSTRAKCJA. Surowe produkty większości reakcji organicznych są najczęściej, jak już nam wiadomo, wieloskładnikowymi mieszaninami. Często stosowaną metodą rozdzielania

Bardziej szczegółowo

CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA. 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową)

CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA. 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową) Ćwiczenie nr 7 CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową) Zasada: Barwniki roślinne charakteryzują się różnym powinowactwem

Bardziej szczegółowo

Terpeny Terpenyidy pochodne terpenów zawierające gr. hydroksylowe, karbonylowe i karboksylowe

Terpeny Terpenyidy pochodne terpenów zawierające gr. hydroksylowe, karbonylowe i karboksylowe Terpeny Terpenyidy pochodne terpenów zawierające gr. hydroksylowe, karbonylowe i karboksylowe Zwiazki o wzorze ogólnym (C 5 H 8 ) n, których główny szkielet powstał w wyniku połączenia pięciowęglowych

Bardziej szczegółowo

DESTYLACJA JAKO METODA WYODRĘBNIANIA I OCZYSZCZANIA ZWIĄZKÓW CHEMICZNYCH

DESTYLACJA JAKO METODA WYODRĘBNIANIA I OCZYSZCZANIA ZWIĄZKÓW CHEMICZNYCH DESTYLCJ JKO METOD WYODRĘNINI I OCZYSZCZNI ZWIĄZKÓW CHEMICZNYCH Zakres materiału: - metody rozdzielania substancji, - destylacja - charakter wykorzystywanych zjawisk, typy destylacji, zastosowanie, charakterystyka

Bardziej szczegółowo

a) Ćwiczenie praktycze: Sublimacja kofeiny z kawy (teofiliny z herbaty i teobrominy z kakao)

a) Ćwiczenie praktycze: Sublimacja kofeiny z kawy (teofiliny z herbaty i teobrominy z kakao) ĆWICZENIE 5 SUBLIMACJA I CHROMATOGRAFIA Celem ćwiczenia jest zapoznanie się z metodami oczyszczania i rozdziału substancji organicznych. Sublimacja jest metodą, za pomocą której można wyodrębnić i oczyścić

Bardziej szczegółowo

Ćwiczenie A-4 Metody rozdzielania i oczyszczania substancji chemicznych.

Ćwiczenie A-4 Metody rozdzielania i oczyszczania substancji chemicznych. Ćwiczenie A-4 Metody rozdzielania i oczyszczania substancji chemicznych. Wymagania teoretyczne: 1. Metody rozdzielania i oczyszczania substancji: a) Krystalizacja b) Ekstrakcja c) Sublimacja d) Destylacja

Bardziej szczegółowo

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA Chromatografia jest to metoda chemicznej analizy instrumentalnej, w której dokonuje się podziału substancji (w przeciwprądzie) między fazę nieruchomą i fazę ruchomą.

Bardziej szczegółowo

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: OCZYSZCZANIE SUBSTANCJI PRZEZ DESTYLACJĘ I EKSTRAKCJĘ

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: OCZYSZCZANIE SUBSTANCJI PRZEZ DESTYLACJĘ I EKSTRAKCJĘ 3 PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: OCZYSZCZANIE SUBSTANCJI PRZEZ DESTYLACJĘ I EKSTRAKCJĘ CEL ĆWICZENIA Zapoznanie studenta z metodami rozdziału mieszanin na drodze destylacji i ekstrakcji. Zakres

Bardziej szczegółowo

Współczesne metody chromatograficzne : Chromatografia cienkowarstwowa

Współczesne metody chromatograficzne : Chromatografia cienkowarstwowa Ćwiczenie 2: Chromatografia dwuwymiarowa (TLC 2D) Celem ćwiczenia jest zaobserwowanie rozdziału mieszaniny aminokwasów w dwóch układach rozwijających. Aminokwasy: Asp, Tyr, His, Leu, Ala, Val, Gly (1%

Bardziej szczegółowo

SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia stacjonarne II rok 2017/2018

SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia stacjonarne II rok 2017/2018 SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia stacjonarne II rok 2017/2018 Materiały do zajęć do Sensoryki i środków zapachowych: wykłady i seminaria z Sensoryki i środków zapachowych materiały wewnętrzne

Bardziej szczegółowo

Destylacja z parą wodną

Destylacja z parą wodną Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten

Bardziej szczegółowo

SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia stacjonarne II rok 2018/2019

SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia stacjonarne II rok 2018/2019 SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia stacjonarne II rok 2018/2019 Materiały do zajęć do Sensoryki i środków zapachowych: wykłady i seminaria z Sensoryki i środków zapachowych materiały wewnętrzne

Bardziej szczegółowo

SENSORYKA I ŚRODKI ZAPACHOWE. KOSMETOLOGIA studia stacjonarne II rok 2016/2017

SENSORYKA I ŚRODKI ZAPACHOWE. KOSMETOLOGIA studia stacjonarne II rok 2016/2017 SENSORYKA I ŚRODKI ZAPACHOWE KOSMETOLOGIA studia stacjonarne II rok 2016/2017 Materiały do zajęć z Sensoryki i środków zapachowych: wykłady i seminaria z Sensoryki i środków zapachowych materiały wewnętrzne

Bardziej szczegółowo

Terpeny. Terpenoidy. Izoterpenoidy. "Chemia Medyczna" dr inż. Ewa Mironiuk-Puchalska, WChem PW

Terpeny. Terpenoidy. Izoterpenoidy. Chemia Medyczna dr inż. Ewa Mironiuk-Puchalska, WChem PW Terpeny Terpenoidy Izoterpenoidy 1 Terpeny Związki zaliczane do lipidów niezmydlających się Terpenyidy Nazwa wywodzi się od terpentyny Terpentyna to Terpenami określa się związki: o wzorze ogólnym (C 5

Bardziej szczegółowo

Współczesne metody chromatograficzne: Chromatografia cienkowarstwowa

Współczesne metody chromatograficzne: Chromatografia cienkowarstwowa Ćwiczenie 2: Chromatografia dwuwymiarowa (TLC 2D) 1. Celem ćwiczenia jest zaobserwowanie rozdziału mieszaniny aminokwasów w dwóch układach rozwijających. Aminokwasy: Asp, Cys, His, Leu, Ala, Val (1% roztwory

Bardziej szczegółowo

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Pracownia: Utylizacja odpadów i ścieków dla MSOŚ Instrukcja ćwiczenia nr 17 Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny

Bardziej szczegółowo

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 1 CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH I. Wiadomości teoretyczne W wielu dziedzinach nauki i techniki spotykamy się z problemem

Bardziej szczegółowo

Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp

Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp Ćwiczenie 6 Zastosowanie destylacji z parą wodną oraz ekstrakcji ciecz-ciecz do izolacji eugenolu z goździków Wstęp Celem ćwiczenia jest zapoznanie się z destylacją z parą wodną oraz ekstrakcją w układzie

Bardziej szczegółowo

1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta

1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta PREPARAT NR 1 O H 1. CH 3 COOK 2. woda, HCl KWAS trans-cynamonowy COOH t. wrz., 4 godz. Stechiometria reakcji Aldehyd benzoesowy 1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta Dane do obliczeń Związek molowa

Bardziej szczegółowo

Ściąga eksperta. Mieszaniny. - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne?

Ściąga eksperta. Mieszaniny.  - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne? Mieszaniny Jak dzielimy substancje chemiczne? Mieszaninami nazywamy substancje złożone z kilku skład, zachowujących swoje właściwości. Mieszaniny uzyskuje się na drodze mechanicznego mieszania ze sobą

Bardziej szczegółowo

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1 PREPARAT NR 1 O H 2 SO 4 COOH + HO t. wrz., 1 godz. O OCTAN IZOAMYLU Stechiometria reakcji Kwas octowy lodowaty Alkohol izoamylowy Kwas siarkowy 1.5 ekwiwalenta 1 ekwiwalentów 0,01 ekwiwalenta Dane do

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

ĆWICZENIE NR 12. Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka

ĆWICZENIE NR 12. Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka ĆWICZENIE NR 12 WYDZIELANIE 90 Th Z AZOTANU URANYLU Podstawy fizyczne 90 Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka oczyszczonych chemicznie związków naturalnego uranu po upływie

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Prawo dyfuzji (prawo Ficka) G = k. F. t (c 1 c 2 )

Prawo dyfuzji (prawo Ficka) G = k. F. t (c 1 c 2 ) EKSTRAKCJA Metoda rozdzielania mieszanin ciekłych lub stałych za pomocą ciekłego rozpuszczalnika, polegająca na poddaniu mieszaniny ciał działaniu odpowiedniego rozpuszczalnika w celu wydzielenia z niej

Bardziej szczegółowo

stożek tulejka płaskie stożkowe kuliste Nominalna długość powierzchni szlifowanej 14/ / /32 29.

stożek tulejka płaskie stożkowe kuliste Nominalna długość powierzchni szlifowanej 14/ / /32 29. tulejka stożek płaskie stożkowe kuliste Oznaczenie wymiaru szlifu Nominalna szersza średnica [mm] Nominalna węższa średnica [mm] Nominalna długość powierzchni szlifowanej 14/23 14.5 12.2 23 19/26 18.8

Bardziej szczegółowo

SENSORYKA I ŚRODKI ZAPACHOWE. KOSMETOLOGIA studia niestacjonarne II rok 2016/2017

SENSORYKA I ŚRODKI ZAPACHOWE. KOSMETOLOGIA studia niestacjonarne II rok 2016/2017 SENSORYKA I ŚRODKI ZAPACHOWE KOSMETOLOGIA studia niestacjonarne II rok 2016/2017 Materiały do zajęć z Sensoryki i środków zapachowych: wykłady i seminaria z Sensoryki i środków zapachowych materiały wewnętrzne

Bardziej szczegółowo

Teoria do ćwiczeń laboratoryjnych

Teoria do ćwiczeń laboratoryjnych Pracownia studencka Zakładu Analizy Środowiska Teoria do ćwiczeń laboratoryjnych Chromatografia cienkowarstwowa MONITORING ŚRODOWISKA Chromatografia cienkowarstwowa (ang. Thin Layer Chromatography, TLC)

Bardziej szczegółowo

Ćwiczenie 1. Ekstrakcja ciągła w aparacie Soxhleta

Ćwiczenie 1. Ekstrakcja ciągła w aparacie Soxhleta III. Metody rozdzielania mieszanin Zagadnienia Rodzaje i podział mieszanin Różnice między związkiem chemicznym a mieszaniną Metody rozdzielania mieszanin o Chromatografia o Krystalizacja o Ekstrakcja o

Bardziej szczegółowo

KRYSTALIZACJA JAKO METODA OCZYSZCZANIA I ROZDZIELANIA SUBSTANCJI STAŁYCH

KRYSTALIZACJA JAKO METODA OCZYSZCZANIA I ROZDZIELANIA SUBSTANCJI STAŁYCH KRYSTALIZACJA JAKO METODA OCZYSZCZANIA I ROZDZIELANIA SUBSTANCJI STAŁYCH Zakres materiału: -metody rozdzielania substancji, -zasady krystalizacji, -etapy krystalizacji, -kryteria doboru rozpuszczalnika

Bardziej szczegółowo

Ćwiczenie 5 Izolacja tłuszczów z surowców naturalnych

Ćwiczenie 5 Izolacja tłuszczów z surowców naturalnych Ćwiczenie 5 Izolacja tłuszczów z surowców naturalnych Zagadnienia teoretyczne Lipidy podział, budowa, charakterystyka, zastosowanie w farmacji (przykłady) Ekstrakcja ciągła Kwasy tłuszczowe - podział,

Bardziej szczegółowo

LABORATORIUM CHEMII ORGANICZNEJ PROGRAM ĆWICZEŃ

LABORATORIUM CHEMII ORGANICZNEJ PROGRAM ĆWICZEŃ LABORATORIUM CHEMII ORGANICZNEJ Rok studiów: II CC-DI semestr III Liczba godzin: 15 (5 spotkań 3h co 2 tygodnie, zajęcia rozpoczynają się w 3 tygodniu semestru) PROGRAM ĆWICZEŃ Ćwiczenie nr 1 Ćwiczenie

Bardziej szczegółowo

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt) Zadanie: 1 (1pkt) Stężenie procentowe nasyconego roztworu azotanu (V) ołowiu (II) Pb(NO 3 ) 2 w temperaturze 20 0 C wynosi 37,5%. Rozpuszczalność tej soli w podanych warunkach określa wartość: a) 60g b)

Bardziej szczegółowo

ĆWICZENIE 5 Barwniki roślinne. Ekstrakcja barwników asymilacyjnych. Rozpuszczalność chlorofilu

ĆWICZENIE 5 Barwniki roślinne. Ekstrakcja barwników asymilacyjnych. Rozpuszczalność chlorofilu ĆWICZENIE 5 Barwniki roślinne Ekstrakcja barwników asymilacyjnych 400 mg - zhomogenizowany w ciekłym azocie proszek z natki pietruszki 6 ml - etanol 96% 2x probówki plastikowe typu Falcon na 15 ml 5x probówki

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ ZLEŻNOŚĆ PRĘŻNOŚCI PRY OD TEMPERTURY - DESTYLCJ WSTĘP Zgodnie z regułą faz w miarę wzrostu liczby składników w układzie, zwiększa się również liczba stopni swobody. Układ utworzony z mieszaniny dwóch cieczy

Bardziej szczegółowo

Wykonanie destylacji:

Wykonanie destylacji: DESTYLACJA Destylacja jest jedną z metod oczyszczania substancji. Stosuje się ją w celu oddzielenia substancji lotnych od mniej lotnych zanieczyszczeń lub do rozdzielenia mieszaniny kilku cieczy różniących

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

2. Ekstrakcja cieczy = C1 C2

2. Ekstrakcja cieczy = C1 C2 ĆWICZENIE 10 SUBLIMACJA I EKSTRAKCJA 1. Sublimacja Celem ćwiczenia jest zapoznanie się z metodą sublimacji, za pomocą której można rozdzielić i oczyścić niewielkie ilości stałych substancji organicznych.

Bardziej szczegółowo

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE WPROWADZENIE Przyswajalność pierwiastków przez rośliny zależy od procesów zachodzących między fazą stałą i ciekłą gleby oraz korzeniami roślin. Pod względem stopnia

Bardziej szczegółowo

STRUKTURA A WŁAŚCIWOŚCI CHEMICZNE I FIZYCZNE PIERWIASTKÓW I ZWIĄZKÓW CHEMICZNYCH

STRUKTURA A WŁAŚCIWOŚCI CHEMICZNE I FIZYCZNE PIERWIASTKÓW I ZWIĄZKÓW CHEMICZNYCH 11 STRUKTURA A WŁAŚCIWOŚCI CHEMICZNE I FIZYCZNE PIERWIASTKÓW I ZWIĄZKÓW CHEMICZNYCH CEL ĆWICZENIA Zapoznanie z właściwościami chemicznymi i fizycznymi substancji chemicznych w zależności od ich formy krystalicznej

Bardziej szczegółowo

SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia niestacjonarne II rok 2018/2019

SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia niestacjonarne II rok 2018/2019 SENSORYKA I ŚRODKI ZAPACHOWE Kosmetologia studia niestacjonarne II rok 2018/2019 Materiały do zajęć do Sensoryki i środków zapachowych: wykłady i seminaria z Sensoryki i środków zapachowych materiały wewnętrzne

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów. 1. Część teoretyczna Właściwości koligatywne Zjawiska osmotyczne związane są z równowagą w układach dwu- lub więcej składnikowych, przy czym dotyczy roztworów substancji nielotnych (soli, polisacharydów,

Bardziej szczegółowo

Strona 1 z 6. Wydział Chemii UJ, Chemia medyczna Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie

Strona 1 z 6. Wydział Chemii UJ, Chemia medyczna Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie ROZDZIELANIE SUBSTANCJI Rozdzielanie substancji jest jednym z najistotniejszych problemów w pracy laboratoryjnej. Problem ten ma istotne znaczenie zarówno dla preparatyki (chemiczna synteza preparatów),

Bardziej szczegółowo

ĆWICZENIA PRZEPROWADZANE W FORMIE POKAZÓW:

ĆWICZENIA PRZEPROWADZANE W FORMIE POKAZÓW: ĆWICZENIA PRZEPROWADZANE W FORMIE POKAZÓW: Wydział Chemii Uniwersytetu Jagiellońskiego 1. Rozdzielanie w układzie ciało stałe/ciało stałe. Sublimacja. Sublimacja stałego jodu z jego mieszaniny z piaskiem.

Bardziej szczegółowo

Zastosowanie dwuwymiarowej chromatografii cienkowarstwowej do separacji kumaryn

Zastosowanie dwuwymiarowej chromatografii cienkowarstwowej do separacji kumaryn Zastosowanie dwuwymiarowej chromatografii cienkowarstwowej do separacji kumaryn Wstęp Celem ćwiczenia jest zastosowanie techniki dwuwymiarowej chromatografii cienkowarstwowej (2D-TLC) do separacji i identyfikacji

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 6 listopada 2002 r. w sprawie metodyk referencyjnych badania stopnia biodegradacji substancji powierzchniowoczynnych zawartych w produktach, których stosowanie

Bardziej szczegółowo

Olejki eteryczne. Definicja. Skład chemiczny. Charakterystyka

Olejki eteryczne. Definicja. Skład chemiczny. Charakterystyka Definicja Olejki eteryczne Zgodna z normą ISO-PN-86497 O.e. to produkty otrzymywane z surowców roślinnych (kwiaty, liście, korzenie, ziele, drewno, kora, gałązki, nasiona, owoce itd.) przez destylację

Bardziej szczegółowo

- Chemia w kosmetologii dla liceum - Surowce kosmetyczne - Ćwiczenie 4 Temat: Olejki eteryczne. Otrzymywanie i charakterystyka.

- Chemia w kosmetologii dla liceum - Surowce kosmetyczne - Ćwiczenie 4 Temat: Olejki eteryczne. Otrzymywanie i charakterystyka. Ćwiczenie 4 Temat: Olejki eteryczne. Otrzymywanie i charakterystyka. Cel ćwiczenia: Poznanie metod otrzymywania olejków eterycznych z surowców roślinnych. I. Część teoretyczna I. 1. Zapach i substancje

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Zakład Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Wyodrębnianie i analiza terpenów ANALIZA PRODUKTÓW POCHODZENIA NATURALNEGO

Bardziej szczegółowo

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017 IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 2 maja 217 Im. Jana Kasprowicza INOWROCŁAW XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z CHEMII w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne do

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 ZASTSWANIE DWUWYMIARWEJ CHRMATGRAFII CIENKWARSTWWEJ D SEPARACJI KUMARYN

Bardziej szczegółowo

Recykling surowcowy odpadowego PET (politereftalanu etylenu)

Recykling surowcowy odpadowego PET (politereftalanu etylenu) Laboratorium: Powstawanie i utylizacja zanieczyszczeń i odpadów Makrokierunek Zarządzanie Środowiskiem INSTRUKCJA DO ĆWICZENIA 24 Recykling surowcowy odpadowego PET (politereftalanu etylenu) 1 I. Cel ćwiczenia

Bardziej szczegółowo

Wykład 8B. Układy o ograniczonej mieszalności

Wykład 8B. Układy o ograniczonej mieszalności Wykład 8B Układy o ograniczonej mieszalności Układy o ograniczonej mieszalności Jeżeli dla pewnego składu entalpia swobodna mieszania ( Gmiesz> 0) jest dodatnia, to mieszanie nie jest procesem samorzutnym

Bardziej szczegółowo

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA KIiChŚ PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH Ćwiczenie nr 5 DESTYLACJA Cel ćwiczenia Doświadczalne wyznaczenie krzywych równowagi ciecz-para dla układu woda-kwas octowy. Wprowadzenie Destylacja

Bardziej szczegółowo

III FLAWONOIDY, KUMARYNY, FURANOCHROMONY student:...

III FLAWONOIDY, KUMARYNY, FURANOCHROMONY student:... 1. Kolokwium wstępne. 2. Analiza organoleptyczna substancji roślinnych: Betulae folium, Arnicae flos, Crataegi folium cum flore, Helichrysi flos, Sambuci flos, Tiliae flos, Equiseti herba, Hyperici herba,

Bardziej szczegółowo

ĆWICZENIE V. Metody rozdzielania mieszanin związków organicznych

ĆWICZENIE V. Metody rozdzielania mieszanin związków organicznych ĆWICZENIE V Metody rozdzielania mieszanin związków organicznych Sposób rozdzielania związków organicznych polega głównie na wykorzystaniu różnic w ich wielkościach fizycznych, takich jak: stan skupienia,

Bardziej szczegółowo

(54) Sposób otrzymywania cykloheksanonu o wysokiej czystości

(54) Sposób otrzymywania cykloheksanonu o wysokiej czystości RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165518 (13)B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 292935 (22) Data zgłoszenia: 23.12.1991 (51) IntCL5: C07C 49/403 C07C

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 CHROMATOGRAFIA GAZOWA WPROWADZENIE DO TECHNIKI ORAZ ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

Chemia Organiczna Syntezy

Chemia Organiczna Syntezy Chemia rganiczna Syntezy Warsztaty dla uczestników Forum Młodych Chemików Gdańsk 2016 Dr hab. Sławomir Makowiec Mgr inż. Ewelina Najada-Mocarska Mgr inż. Anna Zakaszewska Wydział Chemiczny Katedra Chemii

Bardziej szczegółowo

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1 PREPARAT NR 4 O O BENZAMID Cl NH 3 -H 2 O NH 2 5 o C, 1 godz. Stechiometria reakcji Chlorek kwasu benzoesowego Amoniak, wodny roztwór 1 ekwiwalent 4 ekwiwalenty Dane do obliczeń Związek molowa (g/mol)

Bardziej szczegółowo

I. Właściwości wody: II. Stany skupienia wody. Na dnie zbiornika wodnego jest zawsze temperatura 4 O C (największa gęstość wody).

I. Właściwości wody: II. Stany skupienia wody. Na dnie zbiornika wodnego jest zawsze temperatura 4 O C (największa gęstość wody). I. Właściwości wody: bezbarwna bezwonna bez smaku dobry rozpuszczalnik temp. topnienia 0 O C temp. wrzenia 100 O C (pod ciśnieniem 1013 hpa) największa gęstość przy temp. 4 O C Na dnie zbiornika wodnego

Bardziej szczegółowo

Ćwiczenie nr 13 DESTYLACJA OLEJKÓW ETERYCZNYCH Z UPROSZCZONĄ SYMULACJĄ PROCESU REKTYFIKACJI

Ćwiczenie nr 13 DESTYLACJA OLEJKÓW ETERYCZNYCH Z UPROSZCZONĄ SYMULACJĄ PROCESU REKTYFIKACJI Wydział Chemii Zakład Technologii Chemicznej Ćwiczenie nr 13 DESTYLACJA OLEJKÓW ETERYCZNYCH Z UPROSZCZONĄ SYMULACJĄ PROCESU REKTYFIKACJI Lublin 2007 1. Wyodrębnienie substancji w stanie chemicznie czystym

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Technologia chemiczna. Zajęcia 2

Technologia chemiczna. Zajęcia 2 Technologia chemiczna Zajęcia 2 Podstawą wszystkich obliczeń w technologii chemicznej jest bilans materiałowy. Od jego wykonania rozpoczyna się projektowanie i rachunek ekonomiczny planowanego lub istniejącego

Bardziej szczegółowo

EKSTRAKCJA KOFEINY Z PRÓBEK KAWY

EKSTRAKCJA KOFEINY Z PRÓBEK KAWY EKSTRAKCJA KOFEIY Z PRÓBEK KAWY Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego 1. Wprowadzenie 1.1. Kofeina Kofeina (1,3,7-trimetyloksantyna) zwana również teiną jest

Bardziej szczegółowo

NAJCENNIEJSZE OLEJKI ETERYCZNE

NAJCENNIEJSZE OLEJKI ETERYCZNE Spis treści 1 Józef GÓRA Anna LIS NAJCENNIEJSZE OLEJKI ETERYCZNE Część I Monografie Politechniki Łódzkiej Łódź 2017 2 Najcenniejsze olejki eteryczne Recenzenci: prof. dr hab. Czesław Wawrzeńczyk prof.

Bardziej szczegółowo

Ćwiczenia laboratoryjne Z Chemii Organicznej. Ochrona Środowiska

Ćwiczenia laboratoryjne Z Chemii Organicznej. Ochrona Środowiska Ćwiczenia laboratoryjne Z Chemii rganicznej chrona Środowiska Ćwiczenie opracowane na podstawie : M. Burgieł, B. Kawałek, S. Lis, M. Jamrozik, K. strowska, Ćwiczenia Laboratoryjne z Chemii rganicznej Wydawnictwo

Bardziej szczegółowo

Katedra Chemii Organicznej. Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab.

Katedra Chemii Organicznej. Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab. Katedra Chemii Organicznej Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab. Sławomir Makowiec GDAŃSK 2019 Preparaty wykonujemy w dwuosobowych zespołach, każdy zespół

Bardziej szczegółowo

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa Chromatografia Chromatografia kolumnowa Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie Chromatogram czarnego atramentu analiza jakościowa analiza ilościowa Optymalizacja eluentu Optimum 0.2

Bardziej szczegółowo

Badanie właściwości związków powierzchniowo czynnych

Badanie właściwości związków powierzchniowo czynnych POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ ORGANICZNEJ I PETROCHEMII INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: Badanie właściwości związków powierzchniowo czynnych Laboratorium z

Bardziej szczegółowo

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych Ćwiczenie 1 Chromatografia gazowa wprowadzenie do techniki oraz analiza jakościowa Wstęp Celem ćwiczenia jest nabycie umiejętności obsługi chromatografu gazowego oraz wykonanie analizy jakościowej za pomocą

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

mieszczą się zwykle w przedziale C. Olejki wytwarzane są w wyspecjalizowanych tkankach wydzielniczych roślin. W komórce

mieszczą się zwykle w przedziale C. Olejki wytwarzane są w wyspecjalizowanych tkankach wydzielniczych roślin. W komórce Olejki eteryczne to zawarte w roślinach mieszaniny różnych związków chemicznych, które mogą występować we wszystkich częściach rośliny (kwiatach, liściach, łodygach, korzeniach, owocach). Są to bardzo

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC Chromatografia Chromatografia cienkowarstwowa - TLC Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie analiza jakościowa analiza ilościowa Chromatogram czarnego atramentu Podstawowe rodzaje

Bardziej szczegółowo

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1 PREPARAT NR 2 2,4,6-TRIBROMOANILINA NH 2 NH 2 Br Br Br 2 AcOH, 0 o C, 1 godz. Br Stechiometria reakcji Anilina 1 ekwiwalent 3.11 ekwiwalenta Dane do obliczeń Związek molowa (g/mol) Gęstość (g/ml) Anilina

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zastosowanie destylacji z parą wodną do oznaczania masy cząsteczkowej cieczy niemieszającej się z wodą opracował prof. B. Pałecz ćwiczenie nr 35 Zakres zagadnień

Bardziej szczegółowo

H 3. Limonen. ODCZYNNIKI Skórka z pomarańczy lub mandarynek, chlorek metylenu, bezwodny siarczan sodu.

H 3. Limonen. ODCZYNNIKI Skórka z pomarańczy lub mandarynek, chlorek metylenu, bezwodny siarczan sodu. WYDRĘBNIENIE LEJKÓW ETERYZNY el ćwiczenia elem ćwiczenia jest wyodrębnienie limonenu ze skórki pomarańczy lub mandarynki na drodze destylacji z parą wodna. Limonen ze względu na silny zapach znalazł zastosowanie

Bardziej szczegółowo

Kreacja aromatów. Techniki przygotowania próbek. Identyfikacja składników. Wybór składników. Kreacja aromatu

Kreacja aromatów. Techniki przygotowania próbek. Identyfikacja składników. Wybór składników. Kreacja aromatu Kreacja aromatów Techniki przygotowania próbek Identyfikacja składników Wybór składników Kreacja aromatu Techniki przygotowania próbek Ekstrakcja do fazy ciekłej Ekstrakcja do fazy stałej Desorpcja termiczna

Bardziej szczegółowo

ĆWICZENIE 14 ANALIZA INSTRUMENTALNA CHROMATOGRAFIA CIENKOWARSTWOWA W IDENTYFIKACJI SKŁADNIKÓW ROZDZIELANYCH MIESZANIN. DZIAŁ: Chromatografia

ĆWICZENIE 14 ANALIZA INSTRUMENTALNA CHROMATOGRAFIA CIENKOWARSTWOWA W IDENTYFIKACJI SKŁADNIKÓW ROZDZIELANYCH MIESZANIN. DZIAŁ: Chromatografia ĆWICZENIE 14 ANALIZA INSTRUMENTALNA CHROMATOGRAFIA CIENKOWARSTWOWA W IDENTYFIKACJI SKŁADNIKÓW ROZDZIELANYCH MIESZANIN DZIAŁ: Chromatografia ZAGADNIENIA Chromatografia planarna; podział na chromatografię

Bardziej szczegółowo

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO 10 WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO CEL ĆWICZENIA Poznanie podstawowych zagadnień teorii dysocjacji elektrolitycznej i problemów związanych z właściwościami kwasów i zasad oraz

Bardziej szczegółowo

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1 Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda

Bardziej szczegółowo

Zajęcia 10 Kwasy i wodorotlenki

Zajęcia 10 Kwasy i wodorotlenki Zajęcia 10 Kwasy i wodorotlenki Według teorii Brönsteda-Lowrego kwasy to substancje, które w reakcjach chemicznych oddają protony, natomiast zasady to substancje, które protony przyłączają. Kwasy, które

Bardziej szczegółowo

Strona 1 z 6. Wydział Chemii Uniwersytetu Jagiellońskiego Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie

Strona 1 z 6. Wydział Chemii Uniwersytetu Jagiellońskiego Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie ROZDZIELANIE SUBSTANCJI Rozdzielanie substancji jest jednym z najistotniejszych problemów w pracy laboratoryjnej. Problem ten ma istotne znaczenie zarówno dla preparatyki (chemiczna synteza preparatów),

Bardziej szczegółowo

Zapisz równanie zachodzącej reakcji. Wskaż pierwiastki, związki chemiczne, substraty i produkty reakcji.

Zapisz równanie zachodzącej reakcji. Wskaż pierwiastki, związki chemiczne, substraty i produkty reakcji. test nr 2 Termin zaliczenia zadań: IIIa - 29 października 2015 III b - 28 października 2015 zad.1 Reakcja rozkładu tlenku rtęci(ii) 1. Narysuj schemat doświadczenia, sporządź spis użytych odczynników,

Bardziej szczegółowo

Zaawansowane oczyszczanie

Zaawansowane oczyszczanie Zaawansowane oczyszczanie Instrukcje do ćwiczeń laboratoryjnych dla Chemii Podstawowej (III r.), Chemii Środowiska (II III r.) Informatyki Chemicznej (III r.) Chemii Biologicznej (III r.) Zakład Chemii

Bardziej szczegółowo

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową? 1. Chromatogram gazowy, na którym widoczny był sygnał toluenu (t w =110 C), otrzymany został w następujących warunkach chromatograficznych: - kolumna pakowana o wymiarach 48x0,25 cala (podaj długość i

Bardziej szczegółowo

1 ekwiwalent 2 ekwiwalenty 2 krople

1 ekwiwalent 2 ekwiwalenty 2 krople PREPARAT NR 5 COOH OH H 2 SO 4 COOH O ASPIRYNA 50-60 o C, 30 min. O Stechiometria reakcji Kwas salicylowy bezwodny Bezwodnik kwasu octowego Kwas siarkowy stęż. 1 ekwiwalent 2 ekwiwalenty 2 krople Dane

Bardziej szczegółowo

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych Wersja z dnia: 2008-02-25 Wyznaczanie gęstości metodą piknometryczną Gęstości ciała (ρ) jest definiowana jako masa (m) jednostkowej objętości tego ciała (V). Jeśli ciało jest jednorodne, to jego gęstość

Bardziej szczegółowo

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1 PREPARAT NR 13 4-METYLOACETOFENON O (CH 3 CO) 2 O, AlCl 3 t.pok. - 100 o C, 1 h Stechiometria reakcji Chlorek glinu bezwodny Bezwodnik octowy 1 ekwiwalent 0,43 ekwiwalenta 0,2 ekwiwalenta Dane do obliczeń

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 162013 (13) B1 (21) Numer zgłoszenia: 28 3 8 2 5 (51) IntCl5: C 07D 499/76 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 16.02.1990

Bardziej szczegółowo