O sposobie poszukiwania dobrej metody inwestowania na giełdzie

Wielkość: px
Rozpocząć pokaz od strony:

Download "O sposobie poszukiwania dobrej metody inwestowania na giełdzie"

Transkrypt

1 Kzysztof PIASECKI Ademi Eonomiczn w Poznniu O sposobie poszuiwni dobe metody inwestowni n giełdzie Poblem bdwczy Podstwowym poblemem pzed im ste inwesto est oeślenie słdu i stutuy tiego potfel ego inwestyci tóy z puntu widzeni inteesów inwesto est potfelem optymlnym. W teoii i ptyce ynów pitłowych znduemy wiele metod ozwiązni tego poblemu. Nbdzie populną metodą optymlizci potfel est eguł owitz nzuąc wyznczć potfel optymlny n dodze msymlizci stopy zwotu pzy ednoczesne minimlizci winci stopy zwotu. Duże zinteesownie poblemtyą inwestowni n ynu pitłowym powodue że dostępne olece metod optymlizci potfel są coz bogtsze. Zstosownie żde z tych metod de n ogół inną popozycę tiego potfel tóy nleżłoby uznć o optymlny. To z olei odzi nstępny poblem. Inwesto musi sobie odpowiedzieć n pytnie pzy pomocy ie metody m oeślć słd swoego potfel. Oczywistym est że wybieąc włściwą metodę optymlizci potfel nleży się ieowć nczelną egułą finnsów: msymlizcą zysu pzy ednoczesne minimlizci osztów. Względną oceną osiągniętego zysu est stop zwotu. Pzy tie ocenie zysu oszt inwestyci nleży identyfiowć z yzyiem ponoszonym pzez inwesto. Klsyczną względną oceną tiego yzy est winc stopy zwotu. Ozncz to że tże wybieąc włściwą metodę optymlizci potfel nleży się ieowć egułą owitz. Spostzeżenie to wszue n nowy obsz zstosowń eguły owitz tó tut zndzie swe zstosownie pzy wyboze włściwe metody sztłtowni słdu i stutuy potfel inwestycynego. W niniesze pcy zostnie pzedstwion pewien sposób wybou dobe metody inwestowni. Istotnym elementem te pezentci będzie dysus tiego ozwinięci eguły owitz tóe będzie pzydtne pzy poszuiwniu pzydtne poceduy sztłtowni potfel inwestycynego.

2 1. Dysetny model owitz Do opisu pezentownego tut modelu zostnie między innymi zstosowny system notci zpoponowny w (Piseci 005) i ozwinięty w (Piseci 007). Rozwżmy yne pitłowy wyznczony pzez zbió : i 1 n (1) i podstwowych instumentów finnsowych chteyzuących się ednostową ceną. W ten sposób zoste odzwieciedlone złożenie o dosonłe podzielności żdego ze znduących się w obocie instumentu finnsowego. Weźmy tez pod uwgę poedynczego inwesto inwestuącego n tym ynu. Złdmy że ego oczeiwni są ednoodne. Ozncz to że z puntu widzeni ozptywnego inwesto wszystie podstwowe instumenty mą identyczny temin wyupu t T 0. W momencie czsowym t 0 żdy instument finnsowy i est schteyzowny pzez oczeiwną stopę zwotu ex nte i. Wtedy zbió instumentów finnsowych est chteyzowny pzez weto oczeiwnych stóp zwotu ex nte T i 1 n mciez owinci ex nte. Pomimy tut poblem poceduy sttystyczne wyznczni tych wtości. Rozwżmy tez zbió : 1 m () metod optymlizci potfel tywów finnsowych. Kżd z metod 1 m pzypoządowue zbioowi instumentów finnsowych potfel c 1 1 c c n n (3) spełniący dodtowo wune T 1 c 1 (4) n gdzie poszczególne symbole oznczą 1;1; ; 1 R T 1 i c T c1 c cn. Wtość zinwestownego pitłu nie m znczeni dl nszych ozwżń. pozwl to n pzyęcie złożeni (4) głoszącego ze w żdy potfel inwestycyny inwesto ngżue edn ednostę pitłu. Ti zbieg fomlny upszcz dlsze ozwżni. Stop zwotu ex nte ˆ z potfel i e winc ex nte dne są pzy pomocy zleżności

3 T ˆ c (5) T c c. (6) P ˆ chteyzue potfel w momencie t 0 zinwestowni w ten potfel. Z momentem tym niezpzeczlnie łączy się oszt ponoszony pzez inwesto. Koszt ten est identyfiowny z yzyiem obciążącym ten potfel. Ryzyo to est ocenine w momencie 0 t pzy pomocy winci ex nte. Postult zgodnego z yteium minimlizci osztów wybou metody optymlizci potfel powdzi do oeśleni n zbioze metod pepoządu zdefiniownego z pomocą zleżności. (7) Zpis czytmy z puntu widzeni oceny yzy metod est niezgosz od metody. Z dugie stony nleży pmiętć że oczeiwn stop zwotu ex nte pognozą zysów ie może osiągnąć inwesto ngżuący w potfel ˆ est edynie swó pitł. Z oczywistych powodów inwesto inteesue edn msymlizc osiągniętego zysu nie msymlizc pzewidywnego zysu. Osiągniemy zys możemy ocenić edynie w momencie wyupu t T. Wtedy zys ten est oceniny z pomocą oczeiwne stopy zwotu ex post p ˆ. Postult zgodnego z yteium msymlizci zysu wybou metody optymlizci potfel powdzi do oeśleni n zbioze metod pepoządu zdefiniownego z pomocą zleżności p p ˆ. (8) Zpis czytmy z puntu widzeni oceny osiągniętego zysu metod est niezgosz od metody. Jeśli upoządownie stóp zwotu ex nte będzie tfną pognozą upoządowni stóp zwotu ex post to wtedy pepoząde (8) wyznczony pzez stopy zwotu ex post będzie ównowżny stosownemu w lsycznym uęciu teoii owitz nlogicznemu pepoządowi wyznczonemu pzez stopy zwotu ex nte. Poblem weyfici tfności wspomnine pognozy pozostwimy finnsometii. Równoczesne uwzględnienie postultów minimlizci osztów i msymlizci zysów powdzi ns do uznni z dobą żde tie metody optymlizci potfel tó est elementem optimum Peto wyznczonego pzez poównnie

4 wieloyteilne. Kżd z wybnych w ten sposób dobych metod optymlizci potfel wyzncz ti potfel tóy w ozumieniu owitz est efetywny względem zbiou wszystich wyznczonych potfeli : 1 m. p P ˆ chteyzue potfel to ztem ocen ex post metody optymlizci w momencie t T wyupu potfel. Jest i nie może służyć podęciu decyzi inwestycyne w momencie t 0. W te sytuci edynie wielootne wyzncznie optimum Peto w óżnych momentch histoii ynu pitłowego może pozwolić n wyłonienie tich metod sztłtowni potfel tóe możemy uznć z twle dobe. Powste oczywiście ntulne pytnie czy specyfi ynu pitłowego pozwoli w ogóle n t plicę zsdy genelizci histoyczne. Ptyczne poblemy związne z tym poblemem zostną pzybliżone w poniższym studium pzypdu..studium pzypdu Wyozystne tut zostną szeegi czsowe notowń n GPWW obemuące oes od styczni ou 000 do gudni 003. Oes ten podzielono n tzy podoesy odzwieciedlące wszystie możliwe do zistnieni główne tendy n giełdzie tzn.: bess - od styczni 000 do 10 siepni 001 stgnc - od 10 siepni 001 do 5 lipc 00 hoss - od 5 lipc 00 do 30 gudni 003. Niezbędne dle podstwowe chteystyi sttystyczne tych notowń możn znleźć w (Sefin 005). Pzedmiotem nsze nlizy będzie poblem wybni dobych metod optymlizci potfel z pośód metod opisnych w (Jusze Sio 00). Inwesto ezygnue tm z nlizy fundmentlne i z bieżącego śledzeni sytuci moeonomiczne. W swoich decyzch inwesto opie się wyłącznie n szeegch czsowych notowń spółe n GPWW. Ze względu n niższe yzyo specyficzne oz więszą płynność inwesto zmiez onstuowć potfele wyłącznie z ci odnotowywnych w indesie WIG. W ten sposób zostł oeślon zwtość zbiou podstwowych instumentów finnsowych. Słd potfel będzie podległ weyfici i pzebudowie z n miesiąc. W (Sefin 005) żdemu z tych momentów modyfici potfel pzypisno oczeiwne miesięczne stopy zwotu ex nte z żde notowne w WIG ci oz ich mciez owinci ex nte.

5 iesięczne oczeiwne stopy zwotu ex nte t w były tm wyznczne t w (Jusze Sio 00) - o śednie ytmetyczne olenych miesięcznych stóp zwotu ex post obsewownych w dwunstu miesiącch popzedzących moment modyfici potfel. Opiszmy tez zbió metod optymlizci potfel postci (3). Wstępnym etpem żde z pięciu piewszych metod comiesięczny wybó z dwudziestu spółe chteyzuących się w dnym momencie nwięszymi oczeiwnymi stopmi zwotu ex nte. N żdy udził c i spółi i w wtości twozonego potfel nzucone est wtedy ogniczenie 0 c 0. (9) i Wspomnini utozy bdli nstępuące metody optymlizci słdu potfel: 1 - wybiez potfel o msymlne stopie zwotu ex nte - wybiez potfel o minimlne stopie zwotu ex nte - wybiez potfel o minimlne winci ex nte ˆ 1 ˆ - wybiez potfel o minimlne winci ex nte zwotu ex nte 5 ˆ 4 - wybiez potfel o minimlne winci ex nte stopie zwotu ex nte ˆ 5. i o złożone pzeciętne stopie 4 i o złożone pondpzeciętne 5 Oeślone powyże wtości pzeciętne stopie zwotu ex nte ˆ 4 i pondpzeciętne stopie zwotu ex nte ˆ 4 05 mx 0 5 ˆ ˆ 5 wyznczmy z zleżności (10) mx 0 5 min (11) min gdzie poszczególne symbole oznczą: mx - stop zwotu ex nte potfel wyznczonego z pomocą metody 1 min - stop zwotu ex nte potfel wyznczonego z pomocą metody. Do zbiou nleży pondto metod; 6 - wybiez potfel o stutuze identyczne ze stutuą potfel oeślącego WIG. W (Sefin 005) oeślono dl żdego z tych potfeli w żdym z momentów ego modyfici stopy zwotu ex nte i ex post oz wince ex nte. Ocenino łącznie 88 potfele Ze względu n szczupłość miesc szczegółowe wynii te obszene oceny nie zostły tut zpezentowne. N wstępie zmimy się odpowiedzią n pytnie czy

6 upoządownie wyznczone pzez stopy zwotu ex nte est tfną pognozą upoządowni (8) wyznczonego pzez stopy zwotu ex post. W tym celu wyznczono współczynnii Kendl oelci ngowe pomiędzy obom odzmi stóp zwotu. Uzysne wynii pzedstwiono w Tbeli 1. Tbel 1. Współczynnii Kendl oelci między stopmi zwotu ex nte i ex post Tend ynu etod optymlizci potfel Bess Stgnc Hoss Źódło: opcownie włsne Nstępnie w opciu o te wynii testowno ciąg hipotez zeowych: Współczynni oelci est ówny zeu pzeciwstwionych hipotezom ltentywnym: Współczynni oelci est dodtni. Z żdym zem stwiedzno b możliwości odzuceni hipotezy zeowe n zecz hipotezy ltentywne. Poząde wyznczony pzez stopy zwotu ex nte nie est godną zufni pognozą upoządowni (8). Ozncz to że pomiędzy ozwżnymi powyże p dwom chteystymi metod optymlizci potfel edynie ocen ex post ˆ est oceną infomuącą o zeczywiste pzydtności metody. W olenym ou dl żdego złożonego momentu modyfici potfel wyznczmy optimum Peto oeślone pzez pepoządu (7) i (8). W ten sposób dl żdego momentowi notowni wybiemy ex post dobe metody optymlizci potfel inwestycynego. Rezultty tych wyboów pzedstwiono w Tbeli. Łtwo możn tm dostzec b wyźnych wszń dobe metody optymlizci potfel. Ostteczny wniose est tylo eden. Wynii powdzonych bdń sttystycznych nie są powtzlne. Nie est możliw ztem tegoyczn genelizc histoyczn. Nie mmy żdnych cudownych d dl inwestoów. Alchemi finnsów nie odsłonił swego mieni filozoficznego. Z dugie stony możn edn zuwżyć pewne tendence gdyż nietóe metody optymlizci potfel są częście zliczne do gupy metod dobych. Stosuąc te metody zwięszmy sznsę osiągnięci powodzeni n ynu pitłowym. Częstości zliczeni poszczególnych oceninych metod do optimum Peto pzedstwiono w Tbeli 3.

7 Tbel. Kolene wyboy dobych metod optymlizci potfel Tend ynu Bess Stgnc Hoss etod etod etod Legend: Kolene wiesze odpowidą wyóżnionym w tcie twni poszczególnych odzów tendu olenym teminom modyfici potfel. + etod optymlizci potfel zostł zliczon do optimum Peto. Źódło: opcownie włsne Tbel 3. Częstości zliczni metod optymlizci potfel do optimum Peto Tend ynu etod Bess Stgnc Hoss Rzem Źódło: opcownie włsne Bibliogfi

8 R Jusze W. Sio (00): Czy długoteminowo możn wygć z yniem w W. Tczyńsi (ed.) Ryne pitłowy suteczne inwestownie cz. I s Wydwnictwo Nuowe Uniwesytetu Szczecińsiego Szczecin. K. Piseci (005): Od ytmetyi hndlowe do inżynieii finnsowe Wydwnictw Nuowe AE w Poznniu Poznń. K. Piseci (007): odele mtemtyi finnsowe. Instumenty podstwowe Wydwnictwo Nuowe PWN Wszw.. Sefin (005): Weyfic metodologii budowy optymlnego ppieów wtościowych Pc mgistes AE Poznń. O sposobie poszuiwni dobe metody inwestowni n giełdzie Steszczenie W poszuiwniu dobe metody inwestowni lsyczn teoi potfelow owitz nzue msymlizowć stopę zwotu ex nte pzy ównoczesne minimlizci odchyleni stnddowego ex nte. W ptyce edn inwesto nie tyle inteesue msymlizc pognozownego zysu co msymlizc zysu uzysnego. W swoich poszuiwnich est edn ogniczony ocenionym w momencie podęci decyzi inwestycyne yzyiem obczącym żdą z ltentyw inwestycynych. Kieuąc się tymi `pzesłnmi w pcy zpoponowno i pzedysutowno popozycę tiego sposobu poszuiwni dobe metody inwestowni tó poleg n msymlizci stopy zwotu ex post pzy ównoczesne minimlizci odchyleni stnddowego ex nte. Thee dimensionl imge of is Abstct

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

O PEWNYCH MODELACH DECYZJI FINANSOWYCH

O PEWNYCH MODELACH DECYZJI FINANSOWYCH DECYZJE nr 1 czerwiec 2004 37 O PEWNYCH MODELACH DECYZJI FINANSOWYCH Krzysztof Jjug Akdemi Ekonomiczn we Wrocłwiu Wprowdzenie modele teorii finnsów Teori finnsów, zwn również ekonomią finnsową, jest jednym

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH

X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH 1.1 Definice; metoda wsteczne poeci w tomogafii tansmisyne Rys. 1.1 Pzyład dwóch zutów pzedmiotu złożonego z dwóch cylindycznych obietów Z czysto

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

ź Ź Ź Ź ć Ł Ę Ź ć Ź ć Ń Ź Ź Ź Ź ć ć ć ź ć ź Ę ć Ź Ź Ł Ł Ł ć Ł Ą ć ć Ź Ś ć Ź ć Ę Ź ź ć Ź ć ź ć Ę ć Ą ć ć ć Ł ć ć ć ć Ą ć Ź ć ć Ź Ą Ź Ą ź Ń Ą ć Ą ć ć ć Ź ć ć ć ć ć Ą Ą Ą ć Ł Ń ć ć Ź Ł ć Ź Ź Ę Ź ć ć ć ć

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH SSof Polsk, el. (1) 4843, (61) 414151, info@ssof.pl, www.ssof.pl PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Andrzej Sokołowski Akdemi Ekonomiczn w Krkowie, Zkłd Sysyki W oprcowniu ym przedswiono pewną

Bardziej szczegółowo

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE Edyta Macinkiewicz Kateda Zaządzania, Wydział Oganizacji i Zaządzania Politechniki Łódzkiej e-mail: emac@p.lodz.pl BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH

Bardziej szczegółowo

Tradycyjne mierniki ryzyka

Tradycyjne mierniki ryzyka Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym

Struktura kapitału, a wartość rynkowa przedsiębiorstwa na rynku kapitałowym Kurs e-lerningowy Giełd Ppierów Wrtościowych i rynek kpitłowy V edycj Struktur kpitłu, wrtość rynkow przedsiębiorstw n rynku kpitłowym 2010 SPIS TREŚCI I. Wstęp 3 II. Podstwowy miernik rentowności kpitłu

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

ń Ż Ż Ż ź Ś ź ń ŚĆ ć ń Ę ć Ć ń Ę ć ń ć ć Ż Ę Ę Ś ń Ó ć Ę Ć ć ć Ę Ę Ż ń ć ć Ś ń Ę ć ń Ś Ś ć ź Ś ŹĆ Ż Ś Ż ć ć ć ć ć ć ń ć ć ń ć ć Ś Ć ń Ś Ą ć ć ć ć ć ć ń ć ń ć Ć ć ń ć Ą ń ć ć Ę Ś ć ń ź ń Ć Ć ń ć ć ć Ś ć

Bardziej szczegółowo

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Praca dyplomowa

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Praca dyplomowa Politechni Ślą Wydził Automtyi, Eletronii i Informtyi Prc dyplomow Temt : Stnowio lbortoryjne do ymulcji obietów n terowniu SLC500. Promotor : Dr inż. J.przy Student : Tomz tuzczy Cel prcy Celem prcy było

Bardziej szczegółowo

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym

Zbiory rozmyte. Teoria i zastosowania we wnioskowaniu aproksymacyjnym Zior rozmte Teori i zstosowni we wniosowniu prosmcjnm PODSTWOWE POJĘCI Motwcje Potrze opisni zjwis i pojęć wielozncznch i niepreczjnch użwnch swoodnie w jęzu nturlnm np. wso tempertur młod człowie średni

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii

Bardziej szczegółowo

Regulamin oferty Dobry bilet

Regulamin oferty Dobry bilet Regulmin oferty Dobry bilet I. Podstwowe informcje 1. Do odwołni n wybrnych odcinkch sieci kolejowej wprowdz się ofertę Dobry bilet. 2. W ofercie wystwi się bilety: ) jednorzowy n przejzd tm (w dowolnym

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005 ZEZYTY NAUKOWE UNIWERYTETU ZCZECIŃKIEGO NR 424 PRACE INTYTUTU KULTURY FIZYCZNEJ NR 22 2005 MARIA MAKRI PRAWNOŚĆ FIZYCZNA I AKTYWNOŚĆ RUCHOWA KOBIET W WIEKU 20 60 LAT 1. Wstęp Dobr sprwność fizyczn jest

Bardziej szczegółowo

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską POROZUMIENIE zwrte w dniu 11 czerwc 2015 roku w sprwie zsd zwiększeni wyngrodzeń prcowników Uniwersytetu im. Adm Mickiewicz w Poznniu od 1 styczni 2015 roku pomiędzy: Uniwersytetem im. Adm Mickiewicz w

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

MODELOWANIE USŁUG TRANSPORTOWYCH W OBSZARZE DZIAŁANIA CENTRUM LOGISTYCZNO-DYSTRYBUCYJNEGO

MODELOWANIE USŁUG TRANSPORTOWYCH W OBSZARZE DZIAŁANIA CENTRUM LOGISTYCZNO-DYSTRYBUCYJNEGO PACE NAUKOWE POLIECHNIKI WASZAWSKIEJ z. 64 anspot 2008 Jolanta ŻAK Wydział anspotu Politechniki Waszawskie Zakład Logistyki i Systemów anspotowych ul. Koszykowa 75, 00-662 Waszawa logika@it.pw.edu.pl MODELOWANIE

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

ELEMENTY RACHUNKU WEKTOROWEGO

ELEMENTY RACHUNKU WEKTOROWEGO Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn

Bardziej szczegółowo

Samouczek Metody Elementów Skończonych dla studentów Budownictwa

Samouczek Metody Elementów Skończonych dla studentów Budownictwa Grzegorz Dzierżnowski Mrt Sitek Smouczek Metody Elementów Skończonych dl studentów Budownictw Część I Sttyk konstrukcji prętowych OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ WARSZAWA 2012 Preskrypt n

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n

Bardziej szczegółowo

Planowanie inicjatywy lokalnej INICJATYWA LOKALNA PROJEKT SPOŁECZNY CZYM JEST PROJEKT? Projekt jest przedsięwzięciem, które ma początek i koniec.

Planowanie inicjatywy lokalnej INICJATYWA LOKALNA PROJEKT SPOŁECZNY CZYM JEST PROJEKT? Projekt jest przedsięwzięciem, które ma początek i koniec. Plnownie inicjtywy lolnej INICJATYWA LOKALNA PROJEKT SPOŁECZNY CZYM JEST PROJEKT? Projet jest przedsięwzięciem, tóre m począte i oniec. Jest to proces zplnowny i ontrolowny, m doprowdzić do pozytywnego

Bardziej szczegółowo

METODA ELECTRE III W WYBORZE PLATFORMY LMS

METODA ELECTRE III W WYBORZE PLATFORMY LMS ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 6 STUIA INFORMATICA NR 6 MARCIN W. MASTALERZ METOA ELECTRE III W WYBORZE PLATFORMY LMS. Genez problemu Problemty eetywnego wyboru pltormy e-lernngu lsy LMS

Bardziej szczegółowo

2870 KonigStahl_RURY OKRAGLE:2048 KonigStahl_RURY OKRAGLE_v15 3/2/10 4:45 PM Page 1. Partner Twojego sukcesu

2870 KonigStahl_RURY OKRAGLE:2048 KonigStahl_RURY OKRAGLE_v15 3/2/10 4:45 PM Page 1. Partner Twojego sukcesu KonigStl_RURY OKRAGLE:48 KonigStl_RURY OKRAGLE_v15 3/2/1 4:45 PM Pge 1 Prtner Twojego sukcesu KonigStl_RURY OKRAGLE:48 KonigStl_RURY OKRAGLE_v15 3/2/1 4:45 PM Pge 3 Nsz rynek Wilno Kliningrd Gdyni Minsk

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

F : R 0;1 rozkład prawdopodobieństwa stopy zwrotu.

F : R 0;1 rozkład prawdopodobieństwa stopy zwrotu. Nie gaussowskie kyteia zaządzania potfelem Kyteia dominacji stochastycznej stopa zwotu C 0 C0 0, C ;, 0 t C C : R 0;1 ozkład pawdopodobieństwa stopy zwotu 0 U : R R funkcja użyteczności watości stopy zwotu

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH

MODELOWANIE CHARAKTERYSTYK RDZENI FERROMAGNETYCZNYCH Krzysztof Górecki Akdemi orsk w Gdyni Klin Detk Pomorsk Wyższ Szkoł Nuk Stosownych w Gdyni ODELOWANIE CHARAKTERYSTYK RDZENI FERROAGNETYCZNYCH Artykuł dotyczy modelowni chrkterystyk rdzeni ferromgnetycznych.

Bardziej szczegółowo

Bartosz Świątek Kancelaria Olszewski Tokarski & Wspólnicy

Bartosz Świątek Kancelaria Olszewski Tokarski & Wspólnicy Shet pegenci: Jonn Joz-Zugj JZP Knci Adwokck Joz-Zugj, Zij-Piul, Zugj i Ptnezy pp Sylwete Kpzewki Tnpotow Gup Dodcz Piot Michłowki Knci Rdcy Pwnego Piot Michłowki Główne zgdnieni: Btoz Świątek Knci Olzewki

Bardziej szczegółowo

smoleńska jako nierozwiązywalny konflikt?

smoleńska jako nierozwiązywalny konflikt? D y s k u s j smoleńsk jko nierozwiązywlny konflikt? Wiktor Sorl Michł Bilewicz Mikołj Winiewski Wrszw, 2014 1 Kto nprwdę stł z zmchmi n WTC lub z zbójstwem kżnej Diny? Dlczego epidemi AIDS rozpowszechnił

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość

do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

Stanisław RADKOWSKI. Politechnika Warszawska, Instytut Podstaw Budowy Maszyn,

Stanisław RADKOWSKI. Politechnika Warszawska, Instytut Podstaw Budowy Maszyn, WYKORZYSTANIE STACJONARNYCH STACJI MONITORINGU W WYKRYWANIU USZKODZEŃ POJAZDÓW Snisłw RADKOWSKI Poliechnik Wszwsk, Insyu Podsw Budowy Mszyn, ul. Nbu 84, 0-54 Wszw 0 660 86, e-mil: s@sim.pw.edu.pl Scj monioingu

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Fundacja Widzialni strony internetowe bez barier. Audyt stron miast

Fundacja Widzialni strony internetowe bez barier. Audyt stron miast Wrszw, dni 30 mrc 2011 r. Fundcj Widzilni strony internetowe bez brier Audyt stron mist Od 1 mrc 2008r. do 21 kwietni 2008r. przeprowdziliśmy kolejny udyt serwisów dministrcji publicznej. Poddliśmy kontroli

Bardziej szczegółowo

ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE KOMPUTEROWEJ

ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE KOMPUTEROWEJ ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seri: Technologie Informcyjne 007 Tomsz Dobrowolski Ktedr Algorytmów i Modelowni Systemów Politechnik Gdńsk ZASTOSOWANIA TRÓJKĄTNYCH PŁYTEK W GRAFICE

Bardziej szczegółowo

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl

NOWE NIŻSZE CENY. Ceny spiral introligatorskich DOUBLE-LOOP WIRE. www.radpor.pl Rok złożeni 1994 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, RADPOR 81-854-2860 Nowodworsk 32, 21-100 Lubrtów tel./fks 81-855-6154, 81-854-2860 www.rdpor.pl Ceny spirl introligtorskic DOUBLE-LOOP

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Metoda kropli wosku Renferta

Metoda kropli wosku Renferta Metod kropli wosku Renfert Metod Renfert zwn jest tkże techniką K+B. Jej podstwowym złożeniem jest dążenie do prwidłowego odtworzeni powierzchni żujących zęów ocznych podczs rtykulcji. Celem jest uzysknie

Bardziej szczegółowo

Gry czasowe. Tadeusz Radzik (Wrocław) (artykuł wspomnieniowy o prof. Stanisławie Trybule)

Gry czasowe. Tadeusz Radzik (Wrocław) (artykuł wspomnieniowy o prof. Stanisławie Trybule) MATEMATYKA STOSOWANA TOM 11/52 2010 Tdeusz Rdzik (Wrocłw) Gry czsowe (rtykuł wspomnieniowy o prof. Stnisłwie Trybule) Streszczenie. Prc jest rtykułem wspomnieniowym o prof. Stnisłwie Trybule. Wprowdz on

Bardziej szczegółowo

( ) RóŜne rodzaje grup. Symetrie i struktury ciała stałego. W.Sikora, Wyklad 3

( ) RóŜne rodzaje grup. Symetrie i struktury ciała stałego. W.Sikora, Wyklad 3 Symete stutuy ł stłe. W.S Wyld RóŜne dze up up wetw W - zó wetów z ddwnem dzłnem upwym spełn wszyste złŝen ztem est upą. Nzyw sę ą upą wetwą. Gup t est nesńzn (e ząd est nesńzny) mŝe yć ął lu dysetn. Dysetn

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale Trójkąt Pscl od kuchni Kls 1 Gimnzjum nr 1 z Oddziłmi Integrcyjnym i Sportowymi im. Bł. Slomei w Skle ul. Ks.St.Połetk 32 32-043 Skł Gimnzjum nr 1 z Oddziłmi Integrcyjnymi i Sportowymi im. Bł. Slomei w

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

5. Zadania tekstowe.

5. Zadania tekstowe. 5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

Formularze statystyczne

Formularze statystyczne Fomulaze statystyczne pogam badań statystycznych statystyi publicznej Spotanie z pacowniami PUP ejestującymi osoby bezobotne. Spotanie pzygotowane w amach pojetu Ryne Pacy pod Lupą II Podstawa pawna USTAWA

Bardziej szczegółowo

Nina Bątorek-Giesa*, Barbara Jagustyn*

Nina Bątorek-Giesa*, Barbara Jagustyn* Ochon Śodowisk i Zsobów Ntulnych n 40, 2009. Nin Bątoek-Gies*, Bb Jgustyn* Zwtość chlou w biomsie stłej stosownej do celów enegetycznych Chloine content in solid biomss used fo powe industy Słow kluczowe:

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś

Bardziej szczegółowo

ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą

Bardziej szczegółowo

Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć

Bardziej szczegółowo

Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś

Bardziej szczegółowo

Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć

Bardziej szczegółowo

Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź

Bardziej szczegółowo

ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó

Bardziej szczegółowo

Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą

Bardziej szczegółowo

Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż

Bardziej szczegółowo

Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź

Bardziej szczegółowo

Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź

Bardziej szczegółowo

Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć

Bardziej szczegółowo

ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć

Bardziej szczegółowo