1. Wstęp. Joanna Wesołowska przedstawiła referat pt.: Nanotechnologia technologia przyszłości. biomateriałów

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Wstęp. Joanna Wesołowska przedstawiła referat pt.: Nanotechnologia technologia przyszłości. biomateriałów"

Transkrypt

1 The ORTHOSLetter Czasopismo redagowane i wydawane przez Studenckie Koło Naukowe ORTHOS Vol. 1, No 3 May, 2006 W dniach 8-10 maja 2006 dwie nasze koleżanki z trzeciego roku reprezentowały nas na Ogólnopolskiej Konferencji Kół Naukowych Rola i miejsce Studenckich Kół Naukowych w rozwoju współczesnej nauki. Jolanta Grądzka przedstawiła referat pt.: Zastosowanie mikroskopii elektronowej w badaniach biomateria-łów. Joanna Wesołowska przedstawiła referat pt.: Nanotechnologia technologia przyszłości. Joanna Wesołowska w trakcie wystąpienia. Fot. J. Sidun Jolanta Grądzka w trakcie wystąpienia. Fot. J. Sidun Przedstawione referaty wzbudziły bardzo duże zainteresowanie wśród słuchaczy. W bieżącym numerze pragniemy Państwu zaprezentować ich treść. Zastosowanie mikroskopii elektronowej w badaniach biomateriałów Jolanta Grądzka, Jarosław Sidun 1. Wstęp Mikroskop to jeden z najważniejszych wynalazków wszechczasów. Przed jego skonstruowaniem nasze wyobrażenie o świecie ograniczało się do tego, co można było zobaczyć gołym okiem lub za pomocą prostych soczewek skupiających. Mikroskop otworzył przed ludzkim wzrokiem zupełnie nową rzeczywistość. Człowiek ujrzał po raz pierwszy setki "nowych", drobnych zwierzątek i roślin oraz wewnętrzną strukturę materii, od tkanek ludzkich po włókna roślinne. Do dnia dzisiejszego mikroskopy pomagają naukowcom odkrywać nowe gatunki roślin i zwierząt, a lekarzom leczyć choroby. Pierwsze mikroskopy wyprodukowano w Holandii u schyłku XVI wieku. Wynalazcą tego urządzenia mógł być holenderski okulista, Zacharias Jansen, lub też jego rodak - Hans Lippershey. Obaj skonstruowali nieskomplikowane mikroskopy o dwóch soczewkach, nie udało im się jednak za pomocą tych przyrządów

2 zaobserwować niczego interesującego. Nieco później mikroskopów zaczęto używać do celów naukowych. Najpierw uczynił to włoski naukowiec - Galileusz. Oglądając przez mikroskop oko owada, dał nam pierwszy opis jego złożonej budowy. Innym prekursorem w tej dziedzinie był holenderski sukiennik, Antonie van Leeuwenhoek ( ), który sam się nauczył trudnej sztuki szlifowania soczewek. Opisał on po raz pierwszy wiele mikroskopijnych organizmów, niewidzialnych gołym okiem [2]. Mikroskop elektronowy zbudowano według idei mikroskopu optycznego, ale w miejsce promieni świetlnych używa się wiązki elektronów. Pierwszy mikroskop elektronowy skonstruował w 1931 roku Ernst Ruska razem z Maksem Knollem w Berlinie. Badanie cech strukturalnych obiektów biologicznych o wymiarach poniżej 0,2 µm do niedawna stanowiło jeszcze poważny problem. Struktury o tych wymiarach są na ogół zbyt złożone, aby można je było badać z zastosowaniem promieniowania rentgenowskiego, z drugiej strony są zbyt małe, aby uzyskać ich obraz w mikroskopie optycznym [2, 6]. Schematy optyczne mikroskopów elektronowych przedstawione zostały na rysunku 2. Rys. 2. Schematy optyczne mikroskopów elektronowych [6] Mikroskop AFM (Mikroskop Sił Atomowych) jest przedstawicielem klasy mikroskopów o dużej zdolności rozdzielczej, ogólnie nazywanych mikroskopami skaningowymi. W urządzeniach tych nie stosuje się soczewek do wytwarzania obrazów, lecz zamiast nich używa się ostrza, które sonduje powierzchnię próbki. W AFM ostrze jest zamontowane na końcu elastycznego ramienia. Mikroskop STM (Skaningowy Mikroskop Tunelowy) został po raz pierwszy skonstruowany przez Gerda Binniga oraz Heinricha Rohrera. Obaj naukowcy w końcu 1978 roku rozpoczęli badania procesów wzrostu, struktury i własności elektrycznych bardzo cienkich warstw tlenków. Aby móc kontynuować badania w tej dziedzinie potrzebne było urządzenie dające możliwość obserwacji powierzchni w skali ułamków nanometra. Ponieważ do tej pory nie było przyrządów, które by to umożliwiały, Binnig i Rohrer, w 1982 roku skonstruowali swój własny przyrząd - skaningowy mikroskop tunelowy. STM umożliwia uzyskanie obrazu powierzchni materiałów przewodzących ze zdolnością rozdzielczą rzędu pojedynczego atomu. 2. Zastosowanie mikroskopów elektronowych Rys. 1. Mkikroskopy elektronowe: jeden z pierwszych mikroskopów elektronowych, nowoczesny skaningowy mikroskop elektronowy, mikroskop sił atomowych Wynalezienie mikroskopu elektronowego poszerzyło możliwości obserwacji różnych struktur. Za pomocą mikroskopów elektronowych uzyskuje się 2

3 niezwykle efektowne obrazy praktycznie we wszystkich dziedzinach nauki. Ograniczeniem jest jednak konieczność wykonywania pomiaru w próżni oraz przewodnictwo elektryczne próbki. Mikroskopy elektronowe znajdują szerokie zastosowanie w wielu działach nauki. W biologii umożliwiają one zbadanie i poznanie wielu organizmów, wniknięcie do komórki i poznanie licznych jej funkcji. Umożliwiły dokładne badanie najmniejszych organizmów jakimi są bakterie i wirusy. Z takich mikroskopów korzysta też technika. Umożliwiają one badanie struktury krystalicznej i jej defektów. Dzięki mikroskopom elektronowym poznajemy budowę różnych materiałów, co pozwala nam wpływać na ich własności. Współczesna elektronika opiera się w znacznej części właśnie na badaniach, przy których wykorzystuje się mikroskopy elektronowe. Używa się ich powszechnie w przemyśle elektronicznym i w innych gałęziach przemysłu nowoczesnego. Znajdują swoje zastosowanie w archeologii i badaniach historycznych. Korzysta się z nich w laboratoriach fizycznych i chemicznych. Używane są w kryminalistyce i przemyśle, w którym wymagana jest wysoka precyzja i dokładne sprawdzanie wytworzonych materiałów. Mikroskopy elektronowe zapewniają rozwój wielu dziedzin nauki, techniki i przemysłu. Przykłady obrazów uzyskane przy pomocy różnych mikroskopów elektronowych przedstawiono na rysunku poniżej. 3. Zastosowanie mikroskopu elektronowego do badań biomateriałów d) Mikroskopy elektronowe wykorzystuje się w badaniach biomateriałów do [2, 3]: badań morfologii powierzchni; badanie jakości powierzchni powłok ochronnych, badanie uszkodzeń warstwy wierzchniej różnych elementów, do diagnozowania zniszczeń korozyjnych ogniska i produkty korozji. badań struktury, czyli budowy wewnętrznej tworzyw (określenie mikrostruktury stopów, badanie jakości warstwy wierzchniej) duża głębia ostrości mikroskopu skaningowego daje dobre efekty w badaniach topografii przełomów; AFM znalazła zastosowanie w badaniu DNA; badanie preparatów wilgotnych, np. biologicznych i artykułów spożywczych; badanie preparatów biologicznych: struktury kości, krwinek, bakterii, wirusów bakteryjnych, białek, DNA; ostatnio skaningowe mikroskopy tunelowe są wykorzystywane przez naukowców do tworzenia pewnych struktur z pojedynczych atomów. Rys. 3. Przykłady obrazów uzyskane z różnych typów mikroskopów elektronowych: ścieżki mikroprocesora (SEM), głowa owada (SEM), erytrocyty (AFM), d) krąg z atomów żelaza na monokrysztale miedzi (STM) [2, 3] 3

4 W Katedrze Materiałoznawstwa Wydziału Mechanicznego Politechniki Białostockie, znajduje się elektronowy mikroskop skaningowy Hitachi 3000N wyposażony w mikroanalizator rentgenowski QUEST oraz stolik wymrożeniowy do badania preparatów biologicznych. Przykładowe obrazy badanych biomateriałów uzyskane z elektronowego mikroskopu skaningowego Hitachi 3000N przedstawiono na rysunkach poniżej. Rys. 3. Struktury kompozytów: metalicznego Co-Cr-Mo z dodatkiem bioszkła S2 wytworzonego metodą metalurgii proszków, wypełnienia stomatologicznego z nanowypełniaczem [1] Rys. 5. Zdjęcia z mikroskopu skaningowego: kość gąbczasta, owad, pyłek kwiatowy Podsumowanie Rys. 4. Zdjęcie z mikroskopu skaningowego tkanki z okolicy implantu oraz odpowiadające mu widmo składu chemicznego z mikroanalizatora rentgenowskiego Quest [4, 5] Dzięki mikroskopom elektronowym możliwe jest poznanie budowy materii, co pozwala na wpływanie na jej właściwości. Wynalezienie elektronowej mikroskopii tunelowej pozwoliło na tworzenie struktur poprzez manipulację pojedynczych atomów. Manipulowanie pojedynczymi atomami można uznać 4

5 za narodziny nanoinżynierii, potężnej dziedziny nauki, dzięki której w przyszłości będzie można tworzyć nowe, niemożliwe dziś do otrzymania materiały, nowe leki, nowe miniaturowe komponenty elektroniczne, związki chemiczne, a może nawet malutkie roboty składające się z pojedynczych atomów. Literatura 1. Dąbrowski J. R., Spiekane biomateriały na bazie stopu Co-Cr-Mo. Politechnika Warszawska. Warszawa Gulauert A. M. Practical methods in elektron microscopy. Vol. 7, New York Hatton P. V., Brook I. M. The role of electron microscopy in the evaluation of biomaterials. European Microscopy and Analysis, January, 1998, pp Jastrzębski P., Sidun J., Dąbrowski J.R., Ocena korozyjności materiałów implantacyjnych w badanich in vivo. Wybranie zagadnienia z inżynierii biomedycznej. Białystok s Sidun J., Popko J., Dąbrowski J.R., Reakcje okołowszczepowe materiałów implantacyjnych. Mechanika w Medycynie. Rzeszów Wróbel B., Zienkiewicz K., Smoliński D. J., Niedojadło J., Świdziński M. Podstawy mikroskopii elektronowej. Uniwersytet Mikołaja Kopernika, Toruń APPLICATION OF ELECTRON MICROSCOPY IN BIOMATERIAL RESEARCH Abstract: Electron microscope is one of the most important inventions of all times. It opened up a totally new reality to a human eye. In this paper presented are the principles of electron microscope operation and the possibilities of its application in context of biomaterial research. Presented are the research capabilities as well as exemplary biomaterial structures, obtained from a scanning electron microscope Hitachi 3000N equipped with an X-Ray microanalizer QUEST and a low-temperature treatment table for biomaterial sample testing, located in Material Science Department of Technical University in Bialystok. Nanotechnologia technologia przyszłości Joanna Wesołowska, Jarosław Sidun 1. Wstęp Czy można wyobrazić sobie świat, w którym mikrokomputery są mniejsze od główki szpilki, choć ich prędkość ogranicza szybkość poruszania się elektronów, w którym w ciałach ludzi pędzą mniejsze od bakterii mechanizmy, niszczące wszelkie wirusy oraz zmutowane i starzejące się komórki, w którym w powietrzu, glebie i wodzie żyją urządzenia oczyszczające je z najmniejszych nawet zanieczyszczeń? Można sobie pomyśleć, że są to tylko mrzonki i fantastyka, nic nie warte pomysły. Pierwsze komputery to olbrzymie szafy, które potrafiły mniej, niż teraz przeciętny telefon komórkowy. Przed laty nikt się nie spodziewał, że przemysł komputerowy i technologia krzemowej doliny tak szybko się rozwinie. Czy z nanotechnologią będzie tak samo. Badania nad nanotechnologią prowadzone są w wielu laboratoriach i instytucjach badawczych. Mało kto zdaje sobie sprawę, że w ogóle ktoś się tym zajmuje. Rząd Stanów Zjednoczonych zainwestował miliony dolarów, ale rekordzistą w tym względzie jest Japonia, która włożyła ponad 200 milionów dolarów w pierwsze plany assemblera, urządzenia zdolnego budować zadaną z góry strukturę molekularną. Dzisiejsze kalkulacje pozwalają stwierdzić, że assembler będzie niezwykle małym urządzeniem nanometrów długości i 30 nanometrów szerokości. Dokładność, z jaką będzie umieszczał atomy w strukturze molekularnej, zdaje się być niewyobrażalna - 0,1 lub 0,2 nanometra. Nanometr to jedna miliardowa metra odpowiada to dziesięciu atomom wodoru ułożonym jeden za drugim lub jednej milionowej łebka od szpilki [1, 5]. Nanotechnologia - zajmuje się wytwarzaniem struktur lub elementów posiadających przynajmniej w jednym wymiarze rozmiary w granicach od 1 do 100 nanometrów; obejmuje obszar wymiarów od atomów do bakterii, to technologia bazująca na manipulowaniu pojedynczymi atomami i cząsteczkami w celu zbudowania złożonej struktury atomowej. Nanotechnologia oferuje niezwykłe możliwości: szansę odtworzenia środowiska naturalnego, wyplenienie wszelkich chorób, dostęp do taniej energii oraz darmowe pożywienie. Jednak z drugiej strony każdy, kto zdoła opanować tę 5

6 technologię, zdobędzie niesamowitą potęgą. Ale to jeszcze nie wszystko. Firma, która jako pierwsza wprowadzi na rynek nanotechnologiczne rozwiązania, zyska niezwykłą przewagę co w efekcie może doprowadzić do krachu ekonomicznego [4, 5]. Pierwszym krokiem w postępie technologicznym było w 1972 r. skonstruowanie przez Greda Binniga i Heinricha Rohera mikroskopu tunelowego, za pomocą którego można nie tylko dostrzec atomy, ale także przesuwać je wykorzystując siły elektryczne i magnetyczne. W 1989 r. D. Eigler z firmy IBM układa z 35 atomów ksenonu napis IBM na powierzchni monokryształu miedzi (Rys. 1). Rys. 1. Obrazy utworzone z pojedynczych atomów z wykorzystaniem mikroskopu tunelowego: napis IBM utworzony z atomów ksenonu, słowo atom utworzone z atomów żelaza na powierzchni kryształu miedzi, kroki tworzenia kręgu z atomów żelaza [5] Już dziś prowadzone jest wiele prac związanych z wykorzystaniem nanomateriałów w medycynie i technice. Produkowane nanopreparaty miedziowe wykazują silną grzybobójczość osiąganą przy stężeniach tysiąckrotnie mniejszych od preparatów stosowanych w ochronie roślin, drewna, czy w budownictwie. 2. Właściwości nanorurek węglowych Najważniejszym odkryciem ostatnich lat w fizyce materiałowej było odkrycie nanorurek węglowych o niespotykanych dotychczas właściwościach (tabela 1). Amerykańscy naukowcy z NASA zaproponowali system trójwymiarowych nanorurkowych sieci, które mogłyby funkcjonować podobnie do biologicznego systemu nerwowego. Zainspirowana przez naturę komputerowa struktura będzie miała możliwości (zmysłowe i poznawcze) zbliżone do ludzkiego systemu sensorycznego. Prowadzone są prace nad biosilnikami mającymi mieć zastosowanie w nanorobotach. Tabela 1 Zestawienie właściwości nanorurek węglowych Parametr Nanorurka jednowarstwowa Dla porównania Rozmiar Średnica nm Fotolitoragia elektronowa pozwala uzyskać ścieżki o szerokości 50 nm i grubości kilku nm Gęstość g/cm 3 Gęstość aluminium 2.7 g/cm 3 Wytrzymałość na rozciąganie Odporność na zginanie Obciążalność prądem elektrycznym Przewodność cieplna Cena 45 GPa Można je zginać pod dużym kątem i prostować bez uszkodzenia Szacuje się na 1 GA/cm 2 Szacuje się, że w temperaturze pokojowej sięga 6000 W/m K W firmie BuckyUSA (Houston) 1500 USD za gram Odporne na rozciąganie gatunki stali pękają przy ok. 2 GPa Metale i włókna węglowe pękają na granicy ziaren Drut miedziany przepala się przy prądzie o gęstości ok. 1 MA/cm 2 Przewodność cieplna czystego diamentu wynosi 3320 W/m K Cena złota w październiku ub.r. wynosiła ok. 10 USD za gram Źródło: Wytwarzanie nanorurek Węgiel w postaci grafitu, składa się z ułożonych warstwami płaskich arkuszy sześciokątów węglowych; taki arkusz zwija się w rulon tak, żeby sześciokąty szczelnie do siebie przylegały. Najcieńsza z możliwych rurek ma średnicę 1,38 nm. Wśród nanorurek można znaleźć zarówno otwarte, jak i zamknięte formy. Nanorurki węglowe w połączeniu z fulerenami najmocniejszy materiał, jaki kiedykolwiek wyprodukowano (fulereny to osobliwa forma węgla w kształcie dwudziestościanu, przypominająca piłkę futbolową). W nanorurkach wiązania między atomami są silniejsze niż w diamencie, przy tym cienutkie włókna nanorurek są doskonałymi przewodnikami elektrycznymi [3]. Nanorurki otrzymuje się metodami: elektrołukową, katalityczną, laserową, transformacją nanopłaszczyzn, poprzez wysokociśnieniową konwersję CO-HiPCO oraz wysokotemperaturową elektrolizą soli. 6

7 nanorurka Rys. 2. Nanorurki węglowe: przykłady nanorurek, widok nanorurki na ścieżce mikroprocesora [4] 3. Nanotechnologia w życiu codziennym Nieorganiczne dodatki reologiczne zyskują coraz większą popularność w produkcji materiałów budowlanych, zarówno farb i lakierów, jak również materiałów grubo powłokowych takich jak tynków, klejów budowlanych, mas szpachlowych. Koloidy wytwarzane z pojedynczych pierwiastków bądź ich stopów, służące do zabezpieczania materiałów budowlanych, narażonych na rozwój bakterii i grzybów. Do grupy tej zaliczamy także preparaty do zastosowań ochronnych muzealnych, zabezpieczające przed atakiem grzybów: mumie, kości, skóry czy tkaniny, brązy, rzeźby. Firma EXXONMOBIL wytwarza zeolity, minerały o średnicy porów mniejszej niż 1 nm. Wykorzystuje się je jako katalizatory reakcji rozrywania dużych cząsteczek węglowodorów w celu wytwarzania benzyny. Dodatki usprawniające działanie olejów i smarów silnikowych, przedłużające żywotność silników spalinowych, łożysk tocznych, kulkowych i ślizgowych. IBM w ostatnich kilku latach wytwarza warstwy niemagnetyczne o grubości mniejszej niż 1nm, umieszczane między warstwami materiałów magnetycznych. Służą one do produkcji głowic dysków twardych o czułoś ci wielokrotnie większej niż we wcześniejszych układach, dzięki czemu na powierzchni dysku można zapisać więcej danych. Coraz szybsze i mniejsze procesory w komputerach, laserowe diody w czytnikach CD i płaskie ekrany komputerowe. Dzięki osiągnięciom nanotechnologii powstają rewelacyjne ogniwa fotoelektrochemiczne na bazie nanocząsteczek dwutlenku tytanu (TiO 2 ). W odkryciach i produkcji ogniw fotoolektochemicznych olbrzymi udział ma firma Nanopac, która specjalizuje się w tej branży i należy do ścisłej czołówki producentów w tym zakresie. Firma GILEAD SCIENCES produkuje lekarstwa zawarte w lipidowych pęcherzykach o średnicy ok. 100 nm, zwanych liposomami, które krążą w krwioobiegu dłużej. Nanokapsułki, podlegające biodegradacji są już podawane pacjentom chorym na cukrzycę (insulina wziewn [3]. Nanocząsteczki zawierające cenne witaminy lub inne składniki przenikające w głąb skóry to w kosmetyce już oczywistość, tak jak nanocząsteczki leku pokrywające wewnętrzne powierzchnie soczewek kontaktowych pozwalające aplikować leki bez konieczności używania kropli. Pacjenci z uszkodzonym rdzeniem kręgowym mogą oczekiwać przywrócenia przewodzenia nerwów dzięki pracy naukowców nad sztucznymi nerwami, nanotechnologia pomoże w przywróceniu funkcji neurologicznych. Także chorzy na raka czekają na powszechne zastosowanie specjalnych nanorobotów wyposażonych w biosilniki (rys. 3), które w sposób selektywny będą łączyć się i zabijać tylko komórki rakowe pozostawiając te zdrowe w stanie nienaruszonym. Rys. 3. Biosilnik proteinowy bazujący na systemie nanomechanicznym [2] Nanotechnologia wkracza również do sportu. Firma ATOMIC opracowała nowe lekkie, cienkie i płaskie modele nart, w których zastosowano ramę NanoFrame. Górna warstwa narty i rama są wykonane 7

8 z nano włókien. Dobierając odpowiednie warstwy łączące ramę z nano materiałem w różnych modelach Izor uzyskano różny stopień sztywności narty. Tak specyficzna konstrukcja gwarantuje większą precyzję, lepsze trzymanie i doskonałe przyspieszenie (rys. 4) [6]. materiały ceramiczne, przezroczyste filtry słoneczne zatrzymujące promieniowanie podczerwone i nadfioletowe. W Katedrze Materiałoznawstwa PB trwają prace nad polskim materiałem stomatologicznym z nanowypełniaczem polepszającym właściwości materiału. Wstępne badania potwierdzają korzystniejsze cechy nowego materiału. Równolegle prowadzone są również prace nad uzyskaniem otrzymania nanomateriałów metodą skumulowanego odkształcenia plastycznego (rys. 5). Rys. 4. Rama NanoFrame w nartach firmy ATOMIC [6] To dzięki rewolucyjnym osiągnięciom nanotechnologii naukowcy prowadzą wyścig w projektowaniu i produkcji materiałów o właściwościach rodem z science fiction. Chcąc stworzyć nanomaszyny podpatrując odwieczne funkcjonowanie Natury. Natura rozwija istniejące struktury poprzez ewolucyjną adaptację i duplikację molekuł w mikro i makro skalach. Naśladując ewolucję naukowcy planują rozwiązać problem nanomaszynerii (rys. 5) [1, 5]. Rys. 5. Nanomaszyny: nanołozysko, pompa molekularna, rotor pompy molekularnej [5] Firma NANOPHASE TECHNOLOGIES produkuje nanoproszki krystaliczne łączone z innymi materiałami pozwalają polepszyć właściwości chemiczne, mechaniczne, optyczne lub elektryczne materiałów. Dzięki temu uzyskuje się m.in. twardsze Rys. 5. Biomateriały z nanoproszkami: struktura materiału stomatologicznego z nanowypełniaczem, nanoproszek otrzymany metodą skumulowanego odkształcenia plastycznego, struktura porowatego biomateriału z dodatkiem nanoproszku 8

9 Literatura 1. Regis E., Nanotechnologia. Narodziny nowej nauki, czyli świat cząsteczka po cząsteczce. Pruszyński i spółka. Warszawa Iyer S., Romanowicz B., Laudon M., Biomolecular Motors, Nanotech 2004, Vol Shashidhar R., Liquid crystal imaging of biological nanostructures and nanoscale biochemical processes. Nanomedicine: Nanotechnology, Biology, and Medicine, 1 (2005), pp ,1 or 0,2 nanometers. Even today there is research done, relating to application of nanomaterials in medicine and technology. In this paper presented are the properties of carbon nanotubes, a world achievement in the field of nanotechnology, and preliminary results of research over materials with nanofillers obtained at Material Science Department of Technical University in Bialystok. NANOTECHNOLOGY TECHNOLOGY OF THE FUTURE Abstract: Research in nanotechnology is taking place in many laboratories and research institutes. The US Government invested millions of dollars, but the record holder in this field is Japan, which invested over 200 million dollars in first plans of assembler, a device capable of building a demanded molecular structure. Assembler is planned to be an extremely small device 100 nanometers in length and 30 nanometers wide. The precision with which it will place atoms in a molecular structure is unimaginable The OrthosLetter, Czasopismo Studenckiego Koła Naukowego ORTHOS Redakcja: Anna Bukrym redaktor naczelny Jolanta Grądzka Karolina Kruszewska Elżbieta Krawczyk-Dembicka Marta Leusz Dorota Pulkowska Opieka merytoryczna - dr inż. Jarosław Sidun (085)

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

Wykorzystanie Grafenu do walki z nowotworami. Kacper Kołodziej, Jan Balcerak, Justyna Kończewska

Wykorzystanie Grafenu do walki z nowotworami. Kacper Kołodziej, Jan Balcerak, Justyna Kończewska Wykorzystanie Grafenu do walki z nowotworami Kacper Kołodziej, Jan Balcerak, Justyna Kończewska Spis treści: 1. Co to jest grafen? Budowa i właściwości. 2. Zastosowanie grafenu. 3. Dlaczego może być wykorzystany

Bardziej szczegółowo

Dorota Kunkel. WyŜsza Szkoła InŜynierii Dentystycznej

Dorota Kunkel. WyŜsza Szkoła InŜynierii Dentystycznej Dorota Kunkel Implant wszystkie przyrządy medyczne wykonywane z jednego lub więcej biomateriałów, które mogą być umiejscowione wewnątrz organizmu, jak też częściowo lub całkowicie pod powierzchnią nabłonka

Bardziej szczegółowo

Mikroskopia skaningowa tunelowa i siłowa

Mikroskopia skaningowa tunelowa i siłowa Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Instytut Fizyki Doświadczalnej Lipowa 41, 15-424 Białystok Tel: (85) 7457228 http://physics.uwb.edu.pl/zfmag Mikroskopia skaningowa tunelowa i siłowa

Bardziej szczegółowo

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1.

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) I. Wstęp teoretyczny 1. Wprowadzenie Mikroskop sił atomowych AFM (ang. Atomic Force Microscope) jest jednym

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

Grafen perspektywy zastosowań

Grafen perspektywy zastosowań Grafen perspektywy zastosowań Paweł Szroeder 3 czerwca 2014 Spis treści 1 Wprowadzenie 1 2 Właściwości grafenu 2 3 Perspektywy zastosowań 2 3.1 Procesory... 2 3.2 Analogoweelementy... 3 3.3 Czujniki...

Bardziej szczegółowo

Targi POL-EKO-SYSTEM. Strefa RIPOK NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU

Targi POL-EKO-SYSTEM. Strefa RIPOK NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU NANOODPADY JAKO NOWY RODZAJ ODPADÓW ZAGRAŻAJĄCYCH ŚRODOWISKU Beata B. Kłopotek Departament Gospodarki Odpadami Poznań, dnia 28 października 2015 r. Zakres prezentacji 1. Nanomateriały definicja, zastosowania,

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Forum BIZNES- NAUKA Obserwatorium. Kliknij, aby edytować styl wzorca podtytułu. NANO jako droga do innowacji

Forum BIZNES- NAUKA Obserwatorium. Kliknij, aby edytować styl wzorca podtytułu. NANO jako droga do innowacji Forum BIZNES- NAUKA Obserwatorium Kliknij, aby edytować styl wzorca podtytułu NANO jako droga do innowacji Uniwersytet Śląski w Katowicach Oferta dla partnerów biznesowych Potencjał badawczy Założony w

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Materiały y a postęp cywilizacyjny

Materiały y a postęp cywilizacyjny Materiały y a postęp cywilizacyjny Znaczenie różnych grup materiałów w różnych okresach rozwoju cywilizacji Człowiek od zarania dziejów wykorzystywał, a z czasem przetwarzał, materiały potrzebne do zdobycia

Bardziej szczegółowo

FRIATEC AG. Ceramics Division FRIDURIT FRIALIT-DEGUSSIT

FRIATEC AG. Ceramics Division FRIDURIT FRIALIT-DEGUSSIT FRIATEC AG Ceramics Division FRIDURIT FRIALIT-DEGUSSIT FRIALIT-DEGUSSIT Ceramika tlenkowa Budowa dla klienta konkretnego rozwiązania osiąga się poprzez zespół doświadczonych inżynierów i techników w Zakładzie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MECHANIKA I WYTRZYMAŁOŚĆ STRUKTUR KOSTNYCH I IMPLANTÓW Strength and Mechanics of Bone Structure and Implants Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności

Bardziej szczegółowo

Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie elektronowym

Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie elektronowym WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie

Bardziej szczegółowo

Mikroskop sił atomowych

Mikroskop sił atomowych Mikroskop sił atomowych AFM: jak to działa? Krzysztof Zieleniewski Proseminarium ZFCS, 5 listopada 2009 Plan seminarium Łyczek historii Możliwości mikroskopu Budowa mikroskopu na Pasteura Podstawowe mody

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych...

Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych... Spis treści Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych... 1. Spoiwa mineralne... 1.1. Spoiwa gipsowe... 1.2. Spoiwa wapienne... 1.3. Cementy powszechnego użytku... 1.4. Cementy specjalne...

Bardziej szczegółowo

GRAFEN. Prof. dr hab. A. Jeleński. Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu.

GRAFEN. Prof. dr hab. A. Jeleński. Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu. GRAFEN Prof. dr hab. A. Jeleński Instytut Technologii MateriałówElektronicznych Ul.Wólczyńska 133 01-919 Warszawa www.itme.edu.pl SPIS TREŚCI Czy potrzeba nowych materiałów? Co to jest grafen? Wytwarzanie

Bardziej szczegółowo

ZASTOSOWANIE MIKROSKOPII SKANINGOWEJ DO INSPEKCJI UKŁADÓW ELEKTRONICZNYCH WYKONANYCH W TECHNOLOGII SMT

ZASTOSOWANIE MIKROSKOPII SKANINGOWEJ DO INSPEKCJI UKŁADÓW ELEKTRONICZNYCH WYKONANYCH W TECHNOLOGII SMT MECHANIK 7/2013 Mgr inż. Małgorzata BUŻANTOWICZ Muzeum i Instytut Zoologii PAN Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna ZASTOSOWANIE MIKROSKOPII SKANINGOWEJ DO INSPEKCJI UKŁADÓW ELEKTRONICZNYCH

Bardziej szczegółowo

Nanotechnologia na Uniwersytecie Ślaskim podsumowanie oraz plany na przyszlosc

Nanotechnologia na Uniwersytecie Ślaskim podsumowanie oraz plany na przyszlosc Nanotechnologia na Uniwersytecie Ślaskim podsumowanie oraz plany na przyszlosc Jerzy Peszke Uniwersytet Śląski w Katowicach Zakład Fizyki Ciała Stałego Dynamax Nanotechnology Katowice Dynamax Uniwersytet

Bardziej szczegółowo

labmat.prz.edu.pl LABORATORIUM BADAŃ MATERIAŁÓW DLA PRZEMYSŁU LOTNICZEGO Politechnika Rzeszowska ul. W. Pola 2, 35-959 Rzeszów

labmat.prz.edu.pl LABORATORIUM BADAŃ MATERIAŁÓW DLA PRZEMYSŁU LOTNICZEGO Politechnika Rzeszowska ul. W. Pola 2, 35-959 Rzeszów labmat.prz.edu.pl LABORATORIUM BADAŃ MATERIAŁÓW DLA PRZEMYSŁU LOTNICZEGO Politechnika Rzeszowska ul. W. Pola 2, 35-959 Rzeszów Tel.: (17) 854 47 91 Fax: (17) 854 48 32 E-mail: jansien@prz.edu.pl Projekt

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Recenzja. (podstawa opracowania: pismo Dziekana WIPiTM: R-WIPiTM-249/2014 z dnia 15 maja 2014 r.)

Recenzja. (podstawa opracowania: pismo Dziekana WIPiTM: R-WIPiTM-249/2014 z dnia 15 maja 2014 r.) Prof. dr hab. Mieczysław Jurczyk Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Instytut Inżynierii Materiałowej Poznań, 2014-06-02 Recenzja rozprawy doktorskiej p. mgr inż. Sebastiana Garusa

Bardziej szczegółowo

Nowa technologia - Cynkowanie termodyfuzyjne. Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie.

Nowa technologia - Cynkowanie termodyfuzyjne. Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie. Nowa technologia - termodyfuzyjne Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie.com Nowa technologia cynkowanie termodyfuzyjne Pragniemy zaprezentować nowe rozwiązanie

Bardziej szczegółowo

Piny pozycjonujące i piny do zgrzewania dla przemysłu samochodowego FRIALIT -DEGUSSIT ceramika tlenkowa

Piny pozycjonujące i piny do zgrzewania dla przemysłu samochodowego FRIALIT -DEGUSSIT ceramika tlenkowa Piny pozycjonujące i piny do zgrzewania dla przemysłu samochodowego FRIALIT -DEGUSSIT ceramika tlenkowa Większa perfekcja i precyzja podczas produkcji samochodu FRIALIT -DEGUSSIT ceramika tlenkowa 2 Komponenty

Bardziej szczegółowo

PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *)

PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *) Grażyna GILEWSKA PRZYDATNOŚĆ RÓŻNYCH TECHNIK OBRAZOWANIA STRUKTUR BIOLOGICZNYCH WYKORZYSTUJĄCYCH ELEKTRONOWY MIKROSKOP SKANINGOWY *) STRESZCZENIE W artykule przedstawiono stosowane metody obrazowania struktur

Bardziej szczegółowo

PL 198188 B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL 03.04.2006 BUP 07/06

PL 198188 B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL 03.04.2006 BUP 07/06 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 198188 (13) B1 (21) Numer zgłoszenia: 370289 (51) Int.Cl. C01B 33/00 (2006.01) C01B 33/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

Instytut Spawalnictwa SPIS TREŚCI

Instytut Spawalnictwa SPIS TREŚCI Tytuł: Makroskopowe i mikroskopowe badania metalograficzne materiałów konstrukcyjnych i ich połączeń spajanych Opracował: pod redakcją dr. hab. inż. Mirosława Łomozika Rok wydania: 2009 Wydawca: Instytut

Bardziej szczegółowo

Mikroskopia Sił Atomowych (AFM)

Mikroskopia Sił Atomowych (AFM) Narzędzia dla nanotechnologii Mikroskopia Sił Atomowych (AFM) Tomasz Kruk* Wprowadzenie Wśród wielu urządzeń kojarzonych z nanotechnologią żadne nie jest tak dobrze rozpoznawalne i proste w założeniu swojej

Bardziej szczegółowo

MIĘDZYUCZELNIANE CENTRUM. Projekt realizowany przez Uniwersytet im. Adama Mickiewicza w Poznaniu

MIĘDZYUCZELNIANE CENTRUM. Projekt realizowany przez Uniwersytet im. Adama Mickiewicza w Poznaniu MIĘDZYUCZELNIANE CENTRUM NANOBIOMEDYCZNE Projekt realizowany przez Uniwersytet im. Adama Mickiewicza w Poznaniu Międzyuczelniane Centrum NanoBioMedyczne to projekt kluczowy w ramach Działania 13.1 Infrastruktura

Bardziej szczegółowo

Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza

Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza IKiP P Pozyskiwanie wodoru na nanostrukturalnych katalizatorach opartych o tlenki żelaza. Węgrzynowicz, M. ćwieja, P. Michorczyk, Z. damczyk Projektu nr PIG.01.01.02-12-028/09 unkcjonalne nano i mikrocząstki

Bardziej szczegółowo

AFM. Mikroskopia sił atomowych

AFM. Mikroskopia sił atomowych AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości

Bardziej szczegółowo

MOŻLIWOŚCI WYKORZYSTANIA PROMIENIOWANIA OPTYCZNEGO W BADANIACH MAŁYCH MASZYN ELEKTRYCZNYCH

MOŻLIWOŚCI WYKORZYSTANIA PROMIENIOWANIA OPTYCZNEGO W BADANIACH MAŁYCH MASZYN ELEKTRYCZNYCH Jarosław ZADROŻNY MOŻLIWOŚCI WYKORZYSTANIA PROMIENIOWANIA OPTYCZNEGO W BADANIACH MAŁYCH MASZYN ELEKTRYCZNYCH STRESZCZENIE Zakres zastosowania promieniowania optycznego w praktyce badań małych maszyn elektrycznych

Bardziej szczegółowo

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Kompozyty Większość materiałów budowlanych to materiały złożone tzw. KOMPOZYTY składające się z co najmniej dwóch składników występujących

Bardziej szczegółowo

Struktura warstwy wglowej na podłou stali austenitycznej przeznaczonej na stenty wiecowe*

Struktura warstwy wglowej na podłou stali austenitycznej przeznaczonej na stenty wiecowe* AMME 2002 11th Struktura warstwy wglowej na podłou stali austenitycznej przeznaczonej na stenty wiecowe* J. Szewczenko, Z. Paszenda, M. Kaczmarek, J. Marciniak Instytut Materiałów Inynierskich i Biomedycznych,

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

HISTORIA MIKROSKOPU. Magdalena Sadowska ZS Kalisz

HISTORIA MIKROSKOPU. Magdalena Sadowska ZS Kalisz HISTORIA MIKROSKOPU Magdalena Sadowska ZS Kalisz Przypadkowy początek Trudno określić, kiedy odkryto soczewki. Ktoś przypadkowo podniósł kawałek przezroczystego kryształu, który był cieńszy na środku niŝ

Bardziej szczegółowo

Wybrane przykłady zastosowania materiałów ceramicznych Prof. dr hab. Krzysztof Szamałek Sekretarz naukowy ICiMB

Wybrane przykłady zastosowania materiałów ceramicznych Prof. dr hab. Krzysztof Szamałek Sekretarz naukowy ICiMB Wybrane przykłady zastosowania materiałów ceramicznych Prof. dr hab. Krzysztof Szamałek Sekretarz naukowy ICiMB Projekt współfinansowany z Europejskiego Funduszu Społecznego i Budżetu Państwa Rozwój wykorzystania

Bardziej szczegółowo

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA II Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 26 listopada 2014 KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA Dr hab. inż. Jerzy Myalski

Bardziej szczegółowo

Kierunek Międzywydziałowy - Inżynieria Biomedyczna. Politechnika Gdańska, Inżynieria Biomedyczna. Specjalność:

Kierunek Międzywydziałowy - Inżynieria Biomedyczna. Politechnika Gdańska, Inżynieria Biomedyczna. Specjalność: Kierunek Międzywydziałowy - Inżynieria Biomedyczna Specjalność: CHEMIA W MEDYCYNIE CHEMIA W MEDYCYNIE Studia mają charakter interdyscyplinarny, łączą treści programowe m.in. takich obszarów, jak: Analityka

Bardziej szczegółowo

I edycja Konkursu Chemicznego im. Ignacego Łukasiewicza dla uczniów szkół gimnazjalnych. rok szkolny 2014/2015 ZADANIA.

I edycja Konkursu Chemicznego im. Ignacego Łukasiewicza dla uczniów szkół gimnazjalnych. rok szkolny 2014/2015 ZADANIA. I edycja Konkursu Chemicznego im. Ignacego Łukasiewicza dla uczniów szkół gimnazjalnych rok szkolny 2014/2015 ZADANIA ETAP I (szkolny) Zadanie 1 Wapień znajduje szerokie zastosowanie jako surowiec budowlany.

Bardziej szczegółowo

ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F

ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F Wstęp Roboty przemysłowe FANUC Robotics przeznaczone są dla szerokiej gamy zastosowań, takich jak spawanie ( Spawanie to jedno z najczęstszych zastosowań robotów.

Bardziej szczegółowo

Obraz przyrody w obiektywie mikroskopu elektronowego

Obraz przyrody w obiektywie mikroskopu elektronowego Obraz przyrody w obiektywie mikroskopu elektronowego Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski Jagna Karcz, Pracownia Mikroskopii Elektronowej Skaningowej www.semlab.us.edu.pl Technologicznie

Bardziej szczegółowo

Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII

Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII Nagrody Nobla z dziedziny fizyki ciała stałego Natalia Marczak Fizyka Stosowana, semestr VII Zaczęł ęło o się od Alfred Bernhard Nobel (1833 1896) Nadprzewodnictwo Kamerlingh-Onnes Heike (1853-1926) 1926)

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI PL0400058 STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI Instytut Metalurgii Żelaza im. S. Staszica, Gliwice

Bardziej szczegółowo

Powłoka Pural do zastosowań zewnętrznych

Powłoka Pural do zastosowań zewnętrznych Powłoka Pural do zastosowań zewnętrznych Powłoki Pural zostały opracowane specjalnie do systemów dachowych i rynnowych. Jest to doskonały materiał na dachy z rąbkiem stojącym. Ta powierzchnia o delikatnej

Bardziej szczegółowo

Kierunek: Zarządzanie i Inżynieria Produkcji Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Zarządzanie i Inżynieria Produkcji Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Metali Nieżelaznych Kierunek: Zarządzanie i Inżynieria Produkcji Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy: Polski Semestr 1 NIP-1-106-s

Bardziej szczegółowo

Technologia elementów optycznych

Technologia elementów optycznych Technologia elementów optycznych dr inż. Michał Józwik pokój 507a jozwik@mchtr.pw.edu.pl Część 1 Treść wykładu Specyfika wymagań i technologii elementów optycznych. Ogólna struktura procesów technologicznych.

Bardziej szczegółowo

Proces produkcji kabli elektrycznych

Proces produkcji kabli elektrycznych Proces produkcji kabli elektrycznych TOP CABLE Witamy w TOP CABLE. Jesteśmy jednym z największych na świecie producentów przewodów i kabli elektrycznych. VIDEO-BLOG Na tym video-blogu pokażemy jak produkujemy

Bardziej szczegółowo

Wykonywanie elementów metalowych metodą DMLS

Wykonywanie elementów metalowych metodą DMLS Wykonywanie elementów metalowych metodą DMLS Dominik Wyszyński, Maria Chuchro Zakład Niekonwencjonalnych Technologii Produkcyjnych Instytut Zaawansowanych Technologii Wytwarzania w Krakowie Definicja Spiekania

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych na różnych materiałach: o trudno obrabialnych takich jak diamenty, metale twarde, o miękkie

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Wielomodowe, grubordzeniowe

Wielomodowe, grubordzeniowe Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

KONFOKALNY LASEROWY MIKROSKOP SKANINGOWY W BADANIACH TRIBOLOGICZNYCH

KONFOKALNY LASEROWY MIKROSKOP SKANINGOWY W BADANIACH TRIBOLOGICZNYCH 1-2010 T R I B O L O G I A 157 Maciej MATUSZEWSKI *, Michał STYP-REKOWSKI * KONFOKALNY LASEROWY MIKROSKOP SKANINGOWY W BADANIACH TRIBOLOGICZNYCH CONFOCAL LASER SCANNING MICROSCOPE IN TRIBOLOGY INVESTIGATIONS

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Projekt rejestratora obiektów trójwymiarowych na bazie frezarki CNC. The project of the scanner for three-dimensional objects based on the CNC

Projekt rejestratora obiektów trójwymiarowych na bazie frezarki CNC. The project of the scanner for three-dimensional objects based on the CNC Dr inż. Henryk Bąkowski, e-mail: henryk.bakowski@polsl.pl Politechnika Śląska, Wydział Transportu Mateusz Kuś, e-mail: kus.mate@gmail.com Jakub Siuta, e-mail: siuta.jakub@gmail.com Andrzej Kubik, e-mail:

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej! METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH Spektrometry IRMS akceptują tylko próbki w postaci gazowej! Stąd konieczność opracowania metod przeprowadzania próbek innych

Bardziej szczegółowo

CHARAKTERYSTYKA ZMIAN STRUKTURALNYCH W WARSTWIE POŁĄCZENIA SPAJANYCH WYBUCHOWO BIMETALI

CHARAKTERYSTYKA ZMIAN STRUKTURALNYCH W WARSTWIE POŁĄCZENIA SPAJANYCH WYBUCHOWO BIMETALI Mariusz Prażmowski 1, Henryk Paul 1,2, Fabian Żok 1,3, Aleksander Gałka 3, Zygmunt Szulc 3 1 Politechnika Opolska, ul. Mikołajczyka 5, Opole. 2 Instytut Metalurgii i Inżynierii Materiałowej PAN, ul. Reymonta

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/2012 KARTA PRZEDMIOTU Nazwa w języku polskim: BADANIA MIKROSKOPOWE TKANEK I BIOMATERIAŁÓW Nazwa w języku angielskim: MICROSCOPIC STUDIES OF BIOMATERIALS

Bardziej szczegółowo

WYKORZYSTANIE MIKROSKOPII ELEKTRONOWEJ ; DO BADANIA WEWNĘTRZNEJ STRUKTURY DOZYMETRÓW - ALANINOWO-POLIMEROWYCH i o

WYKORZYSTANIE MIKROSKOPII ELEKTRONOWEJ ; DO BADANIA WEWNĘTRZNEJ STRUKTURY DOZYMETRÓW - ALANINOWO-POLIMEROWYCH i o WYKORZYSTANIE MIKROSKOPII ELEKTRONOWEJ ; DO BADANIA WEWNĘTRZNEJ STRUKTURY DOZYMETRÓW - ALANINOWO-POLIMEROWYCH i o ^oj \bstract Zofia Peimel-Stuglik, Bożena Sartowska, Sławomir Fabisiak Instytut Chemii

Bardziej szczegółowo

CIAŁO I ZDROWIE WSZECHŚWIAT KOMÓREK

CIAŁO I ZDROWIE WSZECHŚWIAT KOMÓREK CIAŁ I ZDRWIE WSZECHŚWIAT KMÓREK RGANIZM RGANY TKANKA SKŁADNIKI DŻYWCZE x x KMÓRKA x FUNDAMENT ZDRWEG ŻYCIA x PRZEMIANA MATERII WSZECHŚWIAT KMÓREK Komórki są budulcem wszystkich żywych istot, również nasze

Bardziej szczegółowo

Kierunki rozwoju nauki o materiałach

Kierunki rozwoju nauki o materiałach XI SEMINARIUM POLSKIEGO TOWARZYSTWA MATERIAŁOZNAWCZEGO Kształcenie i badania naukowe w inżynierii materiałowej Kierunki rozwoju nauki o materiałach ach i inżynierii materiałowej Piotr Kula Materiały źródłowe

Bardziej szczegółowo

44-100 Gliwice ul. Towarowa 7. Wartość

44-100 Gliwice ul. Towarowa 7. Wartość PROJEKT LANAMATE Budowa Laboratorium Finansowany w ramach PO IiŚ Działanie 13.1 Infrastruktura szkolnictwa wyższego Kierownik Projektu: Prof. Leszek A. Dobrzański ROZBUDOWA BAZY LABORATORYJNEJ I TECHNOLOGICZNEJ

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Cechy laserowych operacji technologicznych Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych Na różnych materiałach: o Trudno obrabialnych

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik włókienniczych wyrobów dekoracyjnych 311[4

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik włókienniczych wyrobów dekoracyjnych 311[4 Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik włókienniczych wyrobów dekoracyjnych 311[4 Zadanie egzaminacyjne Zleceniodawca złożył zamówienie na wykonanie kilimu i przedstawił

Bardziej szczegółowo

7. Metody przeprowadzenia lekcji:

7. Metody przeprowadzenia lekcji: Scenariusz lekcji, przeprowadzonej w klasie II/III szkoły ponadgimnazjalnej, z przyrody 1. Wątek i TEMAT: B. Nauka i technologia 14. Współczesna diagnostyka i medycyna Temat 86: Materiały, z których wykonuje

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Epiderma roślin- źródłem wiedzy o stanie środowiska

Epiderma roślin- źródłem wiedzy o stanie środowiska Epiderma roślin- źródłem wiedzy o stanie środowiska Warsztaty Metodyczne, Wodzisław, 27 III 2008 Jagna Karcz Pracownia Mikroskopii Skaningowej Wydział Biologii i Ochrony Środowiska Uniwersytet Śląski Rośliny

Bardziej szczegółowo

ĆWICZENIE Nr 4/N. Laboratorium Materiały Metaliczne II. Opracowała: dr Hanna de Sas Stupnicka

ĆWICZENIE Nr 4/N. Laboratorium Materiały Metaliczne II. Opracowała: dr Hanna de Sas Stupnicka POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 4/N Opracowała:

Bardziej szczegółowo

EUROPEJSKIE SŁONECZNE DNI ENERGIA SŁOŃCA FOTOWOLTAIKA TECHNOLOGIE, OPŁACALNOSĆ, REALIZACJE Centrum Innowacji i Transferu Technologii Uniwersytet

EUROPEJSKIE SŁONECZNE DNI ENERGIA SŁOŃCA FOTOWOLTAIKA TECHNOLOGIE, OPŁACALNOSĆ, REALIZACJE Centrum Innowacji i Transferu Technologii Uniwersytet EUROPEJSKIE SŁONECZNE DNI ENERGIA SŁOŃCA FOTOWOLTAIKA TECHNOLOGIE, OPŁACALNOSĆ, REALIZACJE Centrum Innowacji i Transferu Technologii Uniwersytet Warmińsko Mazurski w Olsztynie Olsztyn, 9 maja 2013 r. Szanowni

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 11

Dobór materiałów konstrukcyjnych cz. 11 Dobór materiałów konstrukcyjnych cz. 11 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Zbiornik ciśnieniowy Część I Ashby

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek

Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek Zastosowanie: Akceleratory wysokiego napięcia Materiał: Tlenek glinu FRIALIT F99.7 Pierścienie miedziane L = 560 mm D = 350 mm Produkcja

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XI Badania powierzchni ciała stałego: elektronowy mikroskop skaningowy (SEM), skaningowy mikroskop tunelowy

Bardziej szczegółowo

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera ANALIZA POŁĄCZENIA WARSTW CERAMICZNYCH Z PODBUDOWĄ METALOWĄ Promotor: Prof. zw. dr hab. n. tech. MACIEJ HAJDUGA Tadeusz Zdziech CEL PRACY Celem

Bardziej szczegółowo

Chemia kryminalistyczna

Chemia kryminalistyczna Chemia kryminalistyczna Wykład 2 Metody fizykochemiczne 21.10.2014 Pytania i pomiary wykrycie obecności substancji wykazanie braku substancji identyfikacja substancji określenie stężenia substancji określenie

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Komora próżniowa

Frialit -Degussit Ceramika tlenkowa Komora próżniowa Frialit -Degussit Ceramika tlenkowa Komora próżniowa Zastosowanie: Zaginanie toru cząstki w akceleratorze Materiał: Tlenek glinu FRIALIT F99.7 L = 1350 mm D = 320 mm Produkcja Friatec Na całym świecie

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie 3

Przedmiotowy system oceniania z fizyki w klasie 3 Przedmiotowy system oceniania z fizyki w klasie 3 Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry

Bardziej szczegółowo

Biomechanika pojedynczej komórki w aspekcie zmian nowotworowych. Małgorzata Lekka NZ52, IFJ PAN

Biomechanika pojedynczej komórki w aspekcie zmian nowotworowych. Małgorzata Lekka NZ52, IFJ PAN Biomechanika pojedynczej komórki w aspekcie zmian nowotworowych Małgorzata Lekka NZ52, IFJ PAN O czym będzie mowa: Powstawanie przerzutów Rozpoznawanie pojedynczej komórki rakowej Oddziaływanie komórek

Bardziej szczegółowo

VIII Bałtycki Festiwal Nauki Koło Studentów Biotechnologii PG

VIII Bałtycki Festiwal Nauki Koło Studentów Biotechnologii PG VIII Bałtycki Festiwal Nauki Koło Studentów Biotechnologii PG W ramach tegorocznego Bałtyckiego Festiwalu Nauki, który odbył się w dniach od 27 do 29 maja 2010 roku członkowie Koła Studentów Biotechnologii

Bardziej szczegółowo

Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej

Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej Cienkowarstwowe ogniwa słoneczne: przegląd materiałów, technologii i sytuacji rynkowej Przez ostatnie lata, rynek fotowoltaiki rozwijał się, wraz ze sprzedażą niemal zupełnie zdominowaną przez produkty

Bardziej szczegółowo

ZASTOSOWANIE ANALOGII BIOLOGICZNEJ DO

ZASTOSOWANIE ANALOGII BIOLOGICZNEJ DO Aktualne Problemy Biomechaniki, nr 8/2014 63 Instytut Podstaw Konstrukcji Maszyn, ZASTOSOWANIE ANALOGII BIOLOGICZNEJ DO Streszczenie: W strukturze typu sandwicz z rdzeniem typu pianoaluminium oraz na strukturze

Bardziej szczegółowo

Nowość! Kapturki i opaski ścierne POLICAP. Najwyższa wydajność przy obróbce każdego materiału. SiC-COOL oraz CO-COOL. Innowacje

Nowość! Kapturki i opaski ścierne POLICAP. Najwyższa wydajność przy obróbce każdego materiału. SiC-COOL oraz CO-COOL. Innowacje Kapturki i opaski ścierne POICAP Najwyższa wydajność przy obróbce każdego materiału Nowość! Innowacje ic-coo oraz CO-COO ZAUFAJ NIEBIEKIM Wyjątkowy, szeroki program produktów Bardzo duża ilość usuwanego

Bardziej szczegółowo

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI Dr inż. Danuta MIEDZIŃSKA, email: dmiedzinska@wat.edu.pl Dr inż. Robert PANOWICZ, email: Panowicz@wat.edu.pl Wojskowa Akademia Techniczna, Katedra Mechaniki i Informatyki Stosowanej MODELOWANIE WARSTWY

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych symboli i akronimów... 11

Spis treści. Wykaz ważniejszych symboli i akronimów... 11 Spis treści Wykaz ważniejszych symboli i akronimów... 11 WPROWADZENIE... 15 1. PROBLEMY WYSTĘPUJĄCE W PROCESACH SZLIFOWANIA OTWORÓW ŚCIERNICAMI Z MIKROKRYSTALICZNYM KORUNDEM SPIEKANYM I SPOIWEM CERAMICZNYM...

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Puszki oddzielające do pomp magnetycznych

Frialit -Degussit Ceramika tlenkowa Puszki oddzielające do pomp magnetycznych Frialit -Degussit Ceramika tlenkowa Puszki oddzielające do pomp magnetycznych Zastosowanie: Pompy ze sprzęgłem magnetycznym w przemyśle chemicznym Materiał: Tlenek cyrkonu FRIALIT FZM Produkcja Friatec

Bardziej szczegółowo

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Mariusz Kępczyński, p. 148, kepczyns@chemia.uj.edu.pl Wstęp Plan wykładu mikroskopia

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA KIERUNEK Z PRZYSZŁOŚCIĄ. Przewodnik po kierunku

INŻYNIERIA MATERIAŁOWA KIERUNEK Z PRZYSZŁOŚCIĄ. Przewodnik po kierunku INŻYNIERIA MATERIAŁOWA KIERUNEK Z PRZYSZŁOŚCIĄ Przewodnik po kierunku Dlaczego Inżynieria Materiałowa? W dzisiejszym świecie postęp cywilizacyjny nie byłby możliwy bez nowoczesnych materiałów o coraz bardziej

Bardziej szczegółowo

FRIALIT -DEGUSSIT Ceramika Tlenkowa

FRIALIT -DEGUSSIT Ceramika Tlenkowa FRIALIT -DEGUSSIT Ceramika Tlenkowa FRIALIT jest stosowany wszędzie tam gdzie metal i plastik ma swoje ograniczenia. Ceramika specjalna FRIALIT jest niezwykle odporna na wysoką temperaturę, korozję środków

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Seria filtrów GL Wysokowydajne filtry

Seria filtrów GL Wysokowydajne filtry Seria filtrów GL Wysokowydajne filtry 2 Uwaga: skażenie! Wszystkie branże przemysłu stosują sprężone powietrze jako bezpieczny i niezawodny nośnik energii. Jednakże po wytworzeniu w chwili tłoczenia do

Bardziej szczegółowo

BIOLOGIA W RAMACH PROJEKTÓW EDUKACYJNYCH Charakter i cele proponowanych bloków tematycznych

BIOLOGIA W RAMACH PROJEKTÓW EDUKACYJNYCH Charakter i cele proponowanych bloków tematycznych BIOLOGIA W RAMACH PROJEKTÓW EDUKACYJNYCH Charakter i cele proponowanych bloków tematycznych Zróżnicowanie zagadnień jakimi zajmuje się biologia jest ogromne. Praktycznie trudno jest dzisiaj znaleźć taki

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo