1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych."

Transkrypt

1 Rozdział 4 Uczenie się w grach Na dzisiejszym wykładzie robimy krok w tył w stosunku do tego, o czym mówiliśmy przez ostatnie tygodnie. Dotychczas mówiliśmy o dowolnych grach wieloetapowych, dziś opowiem o grach które mają nieskończenie wiele etapów tylko formalnie, bo na każdym z tych etapów jest rozgrywana ta sama gra jednoetapowa. Celem będzie stwierdzenie, czy grać w taką grę można się nauczyć, a jeśli można, to w jakim sensie do jakiego rozwiązania doprowadzi nas używanie odpowiednich, samouczących się algorytmów. Pomysł tego rodzaju, że równowagę w grze można znaleźć przy pomocy pewnej procedury uczenia się grania w tę grę, jest prawie równie stary jak sama teoria gier. Pierwszy algorytm tego rodzaju powstał na początku lat pięćdziesiątych, czyli w czasie, kiedy dopiero tworzono podstawowe pojęcia teorii gier. Przypominają sobie być może Państwo taką prostą procedurkę z 1. listy zadań, która polegała na tym, że gracze grający w pewną grę dwumacierzową zmieniali na przemian swoje strategie w ten sposób, że dostosowywali się do strategii poprzednika, zmieniając swoją strategię na najlepszą odpowiedź na to, co zagrał ostatnio przeciwnik, i tak na przemian. Jak sobie być może Państwo przypominają, taka prosta procedurka nie musiała być zbieżna, ale jeśli była, to kończyła się w równowadze Nasha. en mechanizm, choć niekiedy skuteczny, miał dwie zasadnicze wady: 1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych. 2. Nie wykorzystywał w żaden sposób tego, co się działo na poprzednich krokach jego działania, nie uczył się (przez co bardzo łatwo się zapętlał, nie prowadząc do żadnego rozwiązania). Na pomysł tego, jak udoskonalić tego typu algorytm tak, żeby nie miał powyższych mankamentów, wpadł Brown, a dowód zbieżności zaproponowanego przez niego algorytmu podała Robinson. Jest to algorytm dla gier macierzowych (czyli o sumie zerowej), opisanych macierzą A rozmiaru n m. Wygląda on następująco: Algorytm Browna-Robinson: Na początku algorytmu: X = [x 1,..., x n ] := 0, Y = [y 1,..., y m ] := 0. Dla każdego kolejnego kroku: Wybieramy i takie, że x i = max i n x i. (Jeśli jest ich więcej niż jedno, to wybieramy najmniejszy z takich indeksów). 32

2 Y := Y + A(i, ). Wybieramy j takie, że y j = min j m y j. (Jeśli jest ich więcej niż jedno, to wybieramy najmniejszy z takich indeksów). X := X + (A(, j )). Intuicyjnie sens takiej procedury jest następujący: na każdym kroku gracze wybierają najlepszą odpowiedź na strategię mieszaną przeciwnika, w której gra on poszczególne strategie z częstotliwością taką, z jaką ich używał na dotychczasowych krokach algorytmu. Jest to więc najprostsze możliwe uogólnienie procedury z 1. listy zadań na strategie mieszane. Jednak dla takiego algorytmu prawdziwe jest już twierdzenie: wierdzenie 4.1 (Robinson, 1951) Jeśli X k oznacza wartość X po k przejściach algorytmu, a Y k wartość Y, to empiryczne rozkłady, z jakimi grają w przeciągu trwania algorytmu gracze zbiegają do równowagi w grze macierzowej z macierzą wypłat pierwszego gracza A, a Xk k i Y k k zbiegają do wartości tej gry. ego twierdzenia nie będę dowodził. Nie będę tego robić z dwóch powodów. Po pierwsze, choć ten algorytm jest bardzo intuicyjnym sposobem uczenia się grania w daną grę, to dowód nie jest błyskawiczny. Z drugiej strony, ma on pewne wady, które zostały wyeliminowane do pewnego stopnia w późniejszych algorytmach, o których będę jeszcze mówił na wykładzie. Pierwszą wadą tego algorytmu jest ograniczona stosowalność jakkolwiek klasa gier, dla których przy pomocy algorytmu Browna i Robinson można dostać w granicy równowagę, jest większa od zbioru gier (jedno)macierzowych, to w ogólności już zbieżność nie ma miejsca. Bardzo prosty przykład gry dwumacierzowej, dla której nie tyle nie jest on zbieżny do równowagi, ile w ogóle nie jest zbieżny, podał Shapley. Wygląda on następująco: Przykład: Rozważmy grę dwumacierzową z macierzami wypłat A = B = oraz. Nietrudno policzyć, że jedyną równowagą w tej grze jest µ = ( 1 3, 1 3, 1 3 ) i σ = ( 1, 1, 1 ). Niestety, jeśli zastosujemy do niej algorytm Browna-Robinson (oczywiście zmodyfikowany dla gier dwumacierzowych), to będzie on przeskakiwał po kolei z pary strategii (1, 1) do (1, 3), dalej do (3, 3), (3, 2), (2, 2), (2, 1), żeby na koniec powrócić do (1, 1). W każdej z tych par strategii będzie jednak spędzał coraz więcej czasu (ilość czasu spędzonego w danej parze strategii będzie rosła wykładniczo), dzięki czemu empiryczne rozkłady strategii granych przez poszczególnych graczy nie będą tworzyć ciągu zbieżnego. Drugą wadą algorytmu jest to, że jego zbieżność do równowagi jest bardzo wolna. W związku z tym gdzieś od końca lat 90. zaczęły się rozwijać alternatywne algorytmy uczenia się w grach, oparte na wykorzystaniu pojęcia regret (żalu). Samo pojęcie nie ma żadnego związku z grami i definiuje się je dla dużo większej klasy algorytmów w następujący sposób: Niech algorytm H na każdym swoim kroku t wybiera rozkład prawdopodobieństwa na pewnym zbiorze alternatyw (akcji) X = {1, 2,..., N}, p t. 33

3 Po wybraniu p t algorytm dostaje informację o tym, jaka strata wiążała się z wybraniem każdej z alternatyw na tym kroku w postaci wektora l t długości N 1 (gdzie l t i jest stratą z wybrania i-tej alternatywy). Na podstawie tego wylicza stratę ze stosowania algorytmu H na t-tym kroku, l t H = N i=1 p t il t i oraz skumulowaną stratę na wszystkich krokach algorytmu do, L H = t=1 l t H. Mając policzoną tę stratę, stara się ją porównać z innymi możliwymi algorytmami, które mógł stosować, i, patrząc na to, o ile ona jest większa od najmniejszej z tych, z którymi porównuje, ewaluuje swój algorytm. Regret to właśnie różnica pomiędzy stratą poniesioną przy pomocy algorytmu H a najmniejszą ze strat, które mógł ponieść stosując alternatywne algorytmy: R = L H L min. Oczywiście trudno sobie wyobrazić porównywanie z wszystkimi możliwymi algorytmami, których zawsze jest nieskończenie wiele. W związku z tym porównuje się nie z dowolnymi algorytmami, ale z takimi, które są albo bardzo proste, albo są niewielką modyfikacją algorytmu H. W zależności od tego, z algorytmami jakiego typu porównujemy, definiujemy różne rodzaje żalu. Najprostszym jest external regret (żal zewnętrzny), w którym stratę poniesioną przez nasz algorytm porównujemy z najmniejszą ze strat poniesionych przez algorytmy polegające na graniu jednej i tej samej akcji na każdym kroku. Można to zapisać następująco: R = max i X L H L i. Drugi rodzaj żalu, który nas będzie interesował, to tzw. swap regret 2, który definiujemy następująco: [ N ] R sw = max p t i(li t lj) t. j X i=1 t=1 Interpretacja nie jest już tak naturalna, jak w przypadku żalu zewnętrznego. utaj rozważamy modyfikacje naszego algorytmu, polegające na tym, że każdą akcję zamieniamy z jakąś inną (albo nie zamieniamy jej w ogóle), ale graną z tym samym prawdopodobieństwem co akcja zamieniana w wyjściowym algorytmie 3. Mając tak zdefiniowane pojęcie regret, wróćmy do gier, na początek o sumie zerowej. Będziemy grać raz za razem w grę macierzową o macierzy wypłat A oraz zbiorach strategii graczy X 1 = {1,..., n} i X 2 = {1,..., m}. Przyjmijmy, że stratą gracza 1. na t-tym etapie tej gry, jeśli gracz 2. stosuje strategię q t będzie minus wypłatą oczekiwaną gracza 1 4, l t,1 i = m j=1 ( a ij )qj. t Podobnie stratą gracza 2. na t-tym etapie gry, jeśli = n i=1 a ij p t i. Przy tak gracz 1. stosuje strategię p t będzie jego wypłata oczekiwana 5 l t,2 j 1 Zwykle zakłada się, że l t [0, 1] N, ale oczywiście można to uogólnić na straty z dowolnego przedziału ograniczonego. 2 u już nie podejmuję się tłumaczenia nazwy na polski. Jakkolwiek bym to zrobił, i tak będzie to wyglądało śmiesznie. 3 Czyli na przykład dla algorytmu, który na etapie 1. wybiera rozkład p 1 = (0.25, 0, 0, 0.25, 0.5), a na drugim p 2 = (0.2, 0.3, 0, 0.5, 0), rozważamy tylko takie algorytmy, w których prawdopodobieństwa wybrania poszczególnych alternatyw są takie same, ale w innej kolejności, i w dodatku zamiana kolejności na obu krokach jest taka sama, np: q 1 = (0, 0, 0.25, 0.5, 0.25) i q 2 = (0.3, 0, 0.2, 0, 0.5), ewentualnie takie, w których któreś dwa prawdopodobieństwa zostały zsumowane, np: r 1 = (0.5, 0, 0, 0, 0.5) i r 2 = (0.7, 0, 0.3, 0, 0). 4 Minus bierze się stąd, że gracz 1. maksymalizuje swoją wypłatę, a tutaj chcemy, żeby minimalizował stratę. 5 u bez minusa, bo gracz 2. w grze o sumie zerowej minimalizuje. 34

4 zdefiniowanych funkcjach straty prawdziwe będzie następujące twierdzenie: wierdzenie 4.2 Niech v będzie wartością gry macierzowej o macierzy A i niech gracz 1. gra w tę grę przez etapów, używając procedury ON z external regret R. Wtedy średnia wypłata gracza 1. na tych etapach (niezależnie od zachowania przeciwnika) jest nie gorsza niż v R. Podobny rezultat jest przwdziwy dla drugiego gracza. Dowód: Dowód przeprowadzamy tylko dla 1. gracza. Ponieważ rozważamy tutaj external regret, to L min = min i X1 L i. Niech q będzie rozkładem prawdopodobieństwa na X 2 takim że q j = 1 t=1 q t j, czyli (jak w algorytmie Browna-Robinson) rozkładem odpowiadającym częstości, z jaką grane są poszczególne strategie na wszystkich dotychczasowych etapach gry. Jak każdy rozkład na X 2, q jest strategią mieszaną gracza 2. w grze macierzowej zdefiniowanej za pomocą macierzy A. Z definicji wartości gry 6, v jest wypłatą, którą gracz 1. może sobie zapewnić, niezależnie od strategii gracza 2. A zatem gracz 1. ma strategię (czystą) i, taką że A stąd v u 1 (δ[i], q) = a ij q j = 1 a ij qj t = 1 j X 2 j X 2 t=1 L i. L min v. Podstawiając to do wzoru na external regret, dostajemy L ON R + L min R v. Jednak L ON to z definicji sumaryczna strata z kroków algorytmu, a więc średnią wypłatą będzie L ON v R, a to właśnie mieliśmy udowodnić. W takim razie wystarczy, że znajdziemy procedurę, dla której żal po kolejnych krokach będzie wzrastał wyraźnie wolniej niż liniowo (wystarczy proporcjonalnie do ), aby mieć dobry algorytm uczenia się grania w grę macierzową. Co jest szczególnie budujące w tym twierdzeniu, to to, że nie precyzujemy, jakiego konkretnie algorytmu musi używać gracz wystarczy, żeby jego external regret był dostatecznie mały. Nie mówimy też, że przeciwnik, jak w algorytmie Browna-Robinson, musi używać takiej samej procedury tutaj gwarantujemy sobie zysk bliski wartości gry niezależnie od tego, jak zachowa się przeciwnik. Podobne twierdzenie (chociaż słabsze, i korzystające z pojęcia swap regret) jest prawdziwe dla dowolnych gier n-osobowych (już nie o sumie zerowej). Znowu straty gracza i definiujemy jako minus jego wypłaty oczekiwane przy ustalonej strategii przeciwnika. Konkretnie, w grze n-osobowej (X 1, X 2,..., K n, u 1, u 2,..., u n ), jeśli gracze na etapie t używają strategii zrandomizowanych p t = (p t,1, p t,2,..., p t,n ), to stratę gracza i na etapie t ze stosowania strategii czystej k definiujemy jako l t,i k = u i (δ[k], p t, i ). (utaj u i (q i, p i ) oznacza wypłatę gracza i, gdy on sam stosuje strategię q i, a pozostali grają zgodnie z p 7 ). Przy tak zdefiniowanych stratach będziemy mogli udowodnić następujące twierdzenie: 6 A raczej z definicji wartości dolnej. 7 ego typu oznaczenie często stosuje się w teorii gier. 35

5 wierdzenie 4.3 Jeśli każdy z graczy w grze n-osobowej, zdefiniowanej przy pomocy funkcji wypłat u i, i = 1,..., n używa przez kolejnych kroków procedury iteracyjnej, której swap regret jest R, to rozkład empiryczny strategii granych przez graczy przy pomocy tych procedur jest R -równowagą skorelowaną8 w powyższej grze. Dowód: 9 Pokażemy, że spełniona jest nierówność dla gracza i definiująca R-równowagę skorelowaną. W definicji swap regret mamy powiedziane, że modyfikując algorytm akcje wymieniamy między sobą. Niech F : X i X i będzie ustaloną funkcją, przy pomocy której robimy tę modyfikację. Ponieważ swap regret jest maksimum po wszystkich możliwych modyfikacjach algorytmu, to na pewno prawdziwa będzie nierówność R L ON L ON,F, gdzie ON jest algorytmem stosowanym przez gracza i, a L ON,F oznacza stratę poniesioną na krokach przez algorytm ON zmodyfikowany przy pomocy funkcji F. Jeśli teraz rozpiszemy sobie prawą stronę powyższej nierówności, dostaniemy + u i (s i, s i ) dp t,1 (s 1 ) dp t,n (s n ) X 1 X n t=1 t=1 u i (F (s i ), s i ) dp t,1 (s 1 ) dp t,n (s n ). X 1 X n Oznaczmy teraz przez Q rozkład empiryczny (na X 1 X n ) strategii granych przez graczy na pierwszych krokach. Można go oczywiście uzyskać jako średnią arytmetyczną łącznych rozkładów strategii graczy na wszystkich krokach. Zapisując ostatnie wyrażenie przy pomocy Q dostaniemy [ ] u i (s i, s i ) dq(s i, s i ) + u i (F (s i ), s i ) dq(s i, s i ). X 1 X n X 1 X n Ale to oznacza, że u i (s i, s i ) dq(s i, s i ) u i (F (s i ), s i ) dq(s i, s i ) R X 1 X n X 1 X n, co mieliśmy udowodnić. 8 ε-równowagę skorelowaną definiujemy analogicznie do ε-równowag Nasha. ε-równowagą skorelowaną nazywamy rozkład prawdopodobieństwa p ε na produkcie przestrzeni strategii czystych graczy X 1 X n, spełniający dla każdego i n warunki u i (s i, s i ) dp ε (s i, s i ) u i (f(s i ), s i ) dp ε (s i, s i ) ε X 1 X n X 1 X n dla dowolnej funkcji f : X i X i, czyli spełniający warunki definiujące równowagę skorelowaną z dokładnością do ε. Osoby, które pamiętają, jak definiowaliśmy równowagę skorelowaną dla gier dwumacierzowych, zapewne pamiętają trochę inne nierówności niż te powyżej (z dokładnością do ε). am po pierwsze występowały sumy, nie całki (ale każdą całkę po zbiorze skończonym można zapisać przy pomocy sumy). Po drugie tam nie pojawiała się żadna funkcja f. Zamiast tego pojawiał się warunek dla każdych k, k X i. yle że ta funkcja f, to właśnie przypisanie k, k. Zapis, jaki stosujemy tutaj, będzie wygodny dla zrozumienia dowodu właśnie omawianego twierdzenia. 9 Nie było go na wykładzie, bo zabrakło czasu. 36

6 Uwaga 4.1 Oczywiście konsekwencją powyższego twierdzenia jest to, że jeśli gracze stosują strategie, których swap regret rośnie subliniowo wraz ze wzrostem, to graniczny rozkład strategii graczy jest (już nie ε) równowagą skorelowaną. Uwaga 4.2 W przypadku tego twierdzenia (i powyższej uwagi) też nie mamy powiedzianego, jakie konkretnie procedury mieliby stosować gracze. W szczególności każdy z nich może stosować inną procedurę iteracyjną uczenia się. Jeśli tylko swap regret będzie odpowiednio ograniczony, otrzymany rozkład będzie odpowiednią ε-równowagą skorelowaną. Oczywiście oba powyższe twierdzenia, jak i uwagi do nich, mają charakter trochę teoretyczny. Żeby można było je rzeczywiście zastosować, potrzebujemy jakichś konkretnych procedur, dla których regret będzie rósł odpowiednio wolno. akich procedur powstało wiele (dziedzina rozwija się na poważnie od stosunkowo niedawna, ale stosunkowo oznacza tutaj połowę lat 90., był więc czas na stworzenie większej ich liczby). Ja na wykładzie podam tylko jedną z nich. Jej własności (to, że dla niej w odpowiedni sposób ograniczony jest external regret) oraz jej modyfikacji, pozwalającej na podobne ograniczenie swap regret, będą podane jako twierdzenia, ale bez dowodów. Polynomial Weigths Algorithm Na początku algorytmu: wi 1 := 1 oraz p 1 i := 1 dla i X. N Dla t = 1 do : wi t := wi t 1 (1 ηli t 1 ), p t i := wt i i X wt i dla i X. η jest tutaj parametrem algorytmu. Odpowiednie jego dobranie gwarantuje jego lepsze własności, dokładniej: wierdzenie 4.4 Jeśli η = min { } ln N, 1 2, to external regret dla powyższego algorytmu po krokach jego działania jest ograniczony z góry przez 2 ln N (przy założeniu, że straty na kolejnych krokach są z przedziału [0, 1]). Znajomość powyższego algorytmu pozwala nam także na stworzenie algorytmu, dla którego swap regret po krokach będzie odpowiednio mały. Będzie on wyglądał następująco: Uruchamiamy jednocześnie N kopii procedury iteracyjnej A. Na każdym kroku t: k-ta kopia A zwraca rozkład qk t = (qk,1, t..., qk,n) t na X. p t obliczamy rozwiązując układ N równań postaci p t j = N i=1 p t iqij. t Za A bierzemy algorytm o wolno rosnącym external regret. Prawdziwe jest bowiem następujące twierdzenie: wierdzenie 4.5 Jeśli external regret dla algorytmu A po krokach jest R, to swap regret dla powyższego algorytmu jest ograniczony z góry przez N R. W szczególności, jeśli jako algorytm A w powyższej procedurze wykorzystamy Polynomial Weigths Algorithm, swap regret jest równy co najwyżej 2N ln N. 37

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

Elementy teorii gier. Badania operacyjne

Elementy teorii gier. Badania operacyjne 2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Elementy teorii gier

Elementy teorii gier Elementy teorii gier. Podaj wszystkie czyste równowagi Nasha. Zaznacz pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,- U 2,3-2,7 D 6,-5 3,5 2. Pewien ojciec ma dwóch synów. Umierając zostawia

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

1 Nierówność Minkowskiego i Hoeldera

1 Nierówność Minkowskiego i Hoeldera 1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

1 Funkcje uniwersalne

1 Funkcje uniwersalne 1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo