Nanowłókna krzemowe (włókna o średnicy poniżej długości fali) oraz włókna chiralne. Silica Nanofibres (Subwavelength-Diameter) and Chiral Fibres

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nanowłókna krzemowe (włókna o średnicy poniżej długości fali) oraz włókna chiralne. Silica Nanofibres (Subwavelength-Diameter) and Chiral Fibres"

Transkrypt

1 Nanowłókna krzemowe (włókna o średnicy poniżej długości fali) oraz włókna chiralne Silica Nanofibres (Subwavelength-Diameter) and Chiral Fibres

2 Wprowadzenie (nanowłókna) Prowadzenie mocy Wytwarzanie krzemowego nanowłókna Potencjalne zastosowania nanowłókien Włókna chiralne wprowadzenie: - chiralna krótko-okresowa siatka (CSPGs) - chiralna średnio-okresowa siatka (CIPGs) - chiralna długo-okresowa siatka (CLPGs)

3 Wprowadzenie (nanowłókna) Krzemionkowe (SiO 2 ) nanowłókno z powietrznym płaszczem nazywane tak ze względu na pod-mikronowe średnice, ma duża różnicę współczynnika złamania rdzenia/płaszcza co efektywnie więzi falę w strukturze. Dla jednomodowego działania takie włókna są zazwyczaj cieńsze niż długość fali prowadzonego światła stąd stosowana jest nazwa włókna o średnicy poniżej długości fali. Mała średnica nanowłókien oraz duża różnica współczynnika załamania rdzeń-płaszcz, przenosi się na szczególne własności tych włókien: mocne uwięzienie fali, duże pole zanikające, duża dyspersja falowodowa. FIG. 1 Profil współczynnika załamania dla nonowłókna z powietrznym płaszczem. FIG. 2 Stała propagacji dla nanowłókna (λ=633nm) Linia przerywana krytyczna średnica dla pracy jednomodowej. Dla λ=1550nm działanie jednomodowe wymaga D< 1.1 um.

4 Prowadzenie mocy Ze względu na duża różnicę współczynnika załamania rdzenia i płaszcza nanowłókna dla długości fali 633 nm silnie skupiają pole elektryczne do średnicy włókna ok. 400 nm. Jednakże dla dalszej redukcji średnicy, znacząca część pola elektrycznego wychodzi poza strukturę rdzenia co jest jednoznaczne ze startą mocy. FIG. 3 Z-towa składowa wektora Poyntinga dla λ=633nm dla nanowłókna o średnicy 400 nm (prawe) oraz 200 nm (lewe). Obszar zakreskowany odpowiada polu we włóknie zaś gradientowy poza włóknem.

5 Wytwarzanie krzemowego nanowłókna Z pośród różnorodnych technik wytwarzania noanowłókna obejmujących: foto lub elektonową litografię wiązkową, chemiczny wzrost, ora technologię przewężki z wykorzystaniem lasera lub palnika niskociśnieniowego ostatnia jest najbardziej korzystna (prostota, możliwość wytworzenia jednorodnej struktury o minimalnej średnicy, gładkość powierzchni na poziomie atomowym, długie włókna). Proces może być jedno lub dwustopniowy. Jednostopniowy proces jest prosty i wygodny, jednakże podczas wyciągania włóka bezpośrednio z zmiękczonego płomieniem materiału, turbulencje i ruch obszaru cieplnego uniemożliwiają wytworzenie jednorodnych nanowłókien o średnicy poniżej 200 nm. W takim przypadku konieczne jest zastosowanie procesu dwustopniowego. FIG. 4 2-stopniowe wytwarzanie nanowłókna. Po wyciągnięciu SMF do średnicy około 1 um (etap 1 - paliwo niskowęglowe CH 3 OH)), włókno jest nawinięte wokół szafirowej przewężki (a) zwój jest ogrzewany poprzez podgrzany szafir (~2000 K) i nanowłókno jest wyciągane 1-10 mm/s (etap 2). (b) fotografia 2 etapu. (c) schemat etapu 2. Istnieje możliwość wykonania nanowłókna o średnicy 50 nm.

6 FIG nm nanowłókno dla 633-nm fali świetlnej umieszczone w aerożelu. Wypromieniowanie z końca pokazuje, iż transmisja ma znacznie mniejsze tłumienie 0.06 db/mm niż scater rysunek obok Potencjalne zastosowania nanowłókien Służą do budowy zespołów różnych mikro- lub nano- fotonicznych elementów lub urządzeń takich jak: liniowe oraz łukowe falowody, sprzęgacze optyczne, rezonatory pierścieniowe, zastosowania w optyce nieliniowej, generacja superkontinuum, prowadzenie i pułapkowanie atomów. Małe wymiary, niskie straty optyczne, prowadzenie wiązki zanikającej, mechaniczna giętkość nadają im unikalne własności w porównaniu do klasycznych urządzeń. Zastosowanie nanowłókna w urządzeniach wymaga umieszczenia ich w podłożu o odpowiednio niskim współczynniku załamania, np. w krzeminkowym aerożelu (cząstki o rozmiarze ok. 5 nm, własności optyczne podobne do krzemionki i n= ).

7 FIG nm nanowłókno uformowane w łuk o promieniu 8 um w aerożelu ze stratnością dla 633- nm fali świetlnej rzędu 1 db rysunek obok. (planarny PCF jest znacznie trudniejszy technologicznie oraz wykazuje nieuniknione straty out-fo-plane). FIG um średnicy mikro-ring z 880-nm nanowłókno jako rezonator oraz jego charakterystyka transmisyjna o Q rzędu 1000 doniesienia o Q=10 10

8 Wspominana zaleta nanowłókna posiadanie silnej fali typu evanescent (prowadzenie światła z duża częścią mocy propagującą się poza rdzeniem), pozwala na łatwe wykorzystanie tej struktury do budowy czujników wysoka czułość na zmianę współczynnika załamania otoczenia lub mikrozgięcia nanowłókna przy zachowaniu własności koherencji prowadzonej wiązki. Poniżej schemat takiego czujnika: nanowłókno umieszczone w komorze pomiarowej zawierającej odpowiednie receptory dla danych molekuł, co powoduje zmiany współczynnika załamania otoczenia lub temperatury i oddziaływuje na nanowłókno. Przykłady: pomiar współczynnika załamania cieczy w kanałach microfluidic czułość rzędu 5x10-4, mikroczujnik wodoru poprzez pokrycie nanowłókna ultra cienką warstwa platyny zmiana absorpcji fali evanescent (czas działania ok. 10 s, czyli kilka razy szybciej niż inne rozwiązania). FIG. 8 Schemat krzemionkowego nanowłóknowego elementu czujnikowego.

9 Włókna chiralne - wprowadzenie Włókna chiralne używają alternatywnego podejścia do wprowadzania okresowości do struktury, która pozwala na polaryzacyjną lub zależną od długości fali selektywność własności. Dzięki temu możliwe jest wprowadzenie do struktury włókna dodatkowych funkcjonalności wymaganych przez filtr, polaryzator, czujnik lub zastosowania laserowe. FIG. 9 Widok z boku na dwuskokowa siatkę na włóknie chiralnym Włókna z rdzeniami: dwójłomnymi centralnymi (double-helix) lub niecentralnymi (single-helix) są mocno skręcane. W czasie przechodzenia przez minipiec na stanowisku (FIG. 10). Wysokokontrastowa siatka chiralna może być uzyskana w strukturze bez konieczności jej fotouczulania. Dla dwuskokowej struktury, oddziaływanie rezonansowe jest możliwe jedynie dla kołowo spolaryzowanego światła o tej samej skrętności co skrętność struktury, podczas gdy dla jednoskokowej struktury bez dwójłomnego rdzenia, oddziaływanie rezonansowe jest nieczułe polaryzacyjnie. FIG. 10 Widok stanowiska do wytwarzania włókna chiralnego

10 Włókna chiralne dzieli się na trzy zasadnicze grupy ze względu na stosunek skoku włókna do długości fali we włóknie Q=P/ λ: A) CSPGS rezonansowa chiralna krótko-okresowa siatka z okresem (pitch) rzędu 1 um, która odbija światło wewnątrz rdzenia włókna, B) CIPGS nierezonansowa chiralna średnio-okresowa siatka z okresem (pitch) rzędu 10 um, która rozprasza światło poza rdzeń,

11 C) CLPGS chiralna długo-okresowa siatka z okresem (pitch) rzędu 100 um, która rezonansowo sprzęga mody rdzeniowe do propagujących się modów w płaszczu.

12 CIPG oraz CLPG struktury są wytwarzane z wystarczającą precyzją do produkcji wysokiej jakości polaryzatorów, filtrów i czujników. Natomiast precyzja wytwarzania CSPG jest niska pomimo jednorodności struktury na poziomie mikroskopowego oglądu, nie uzyskano dobrych wyników dla filtrów optycznych. Polaryzacyjna i zależna od długości fali selektywność włókien chiralnych uzależniona jest od symetrii struktury. Stąd rozważania dotyczące oddziaływania we włóknie chiralnym mogą być prowadzone podobnie do zachowania się przejścia fali przez anizotropową planarną strukturę chiralną taką jak cholesteryczne ciekłe kryształy (CLC Colesteric Liquid Crystals) FIG. 11 Struktura pasmowa warstwowego dielektryka z okresem a oraz jasne i ciemne warstwy odpowiadające wysokiemu i niskiemu współczynnikowi załamania światła. Pole elektryczne (E) oraz natężenie (I) blisko środka struktury są pokazane FIG. 12 Struktura fotoniczna CLC z okresem a i skokiem p=2a. Strzłki obrazują kierunek pola elektrycznego w warstwie

Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers

Włókna z cieczowym rdzeniem oraz włókna plastykowe. Liquid-Core and Polymer Optical Fibers Włókna z cieczowym rdzeniem oraz włókna plastykowe Liquid-Core and Polymer Optical Fibers Prowadzenie światła w falowodach cieczowych Zastosowanie falowodów cieczowych Włókna polimerowe Efekt propagacji

Bardziej szczegółowo

Wielomodowe, grubordzeniowe

Wielomodowe, grubordzeniowe Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna

Bardziej szczegółowo

Włókna na średnią i daleką podczerwień, z eliptycznym rdzeniem oraz typu D. Mid- and Long- Infrared as well as Elliptical Core and D-shape Fibers

Włókna na średnią i daleką podczerwień, z eliptycznym rdzeniem oraz typu D. Mid- and Long- Infrared as well as Elliptical Core and D-shape Fibers Włókna na średnią i daleką podczerwień, z eliptycznym rdzeniem oraz typu D Mid- and Long- Infrared as well as Elliptical Core and D-shape Fibers Wprowadzenie Włókna ze szkieł domieszkowanych: HMFG HMGG

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 4 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi

Bardziej szczegółowo

Wykład 12: prowadzenie światła

Wykład 12: prowadzenie światła Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Właściwości transmisyjne

Właściwości transmisyjne Właściwości transmisyjne Straty (tłumienność) Tłumienność np. szkła technicznego: około 1000 db/km, szkło czyszczone 300 db/km Do 1967 r. tłumienność ok. 1000 db/km. Problem Na wyjściu światłowodu chcemy

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Światłowodowe elementy polaryzacyjne

Światłowodowe elementy polaryzacyjne Światłowodowe elementy polaryzacyjne elementy wykorzystujące własności przenoszenia polaryzacji w światłowodach jednorodnych i dwójłomnych polaryzatory izolatory optyczne depolaryzatory kompensatory i

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 18/15. HANNA STAWSKA, Wrocław, PL ELŻBIETA BEREŚ-PAWLIK, Wrocław, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 18/15. HANNA STAWSKA, Wrocław, PL ELŻBIETA BEREŚ-PAWLIK, Wrocław, PL PL 224674 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224674 (13) B1 (21) Numer zgłoszenia: 409674 (51) Int.Cl. G02B 6/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1

OPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1 OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Falowa natura światła E H z z ( ) ± jmθ j( ωt βz ) r e e k = E o n 1 z LP 01 = H z ( ) ± jmθ j( ωt βz ) r e e LP 11 k o V = 2πa λ 2π ω = = o λ c λ 0 lim ω ω

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

FMZ10 S - Badanie światłowodów

FMZ10 S - Badanie światłowodów FMZ10 S - Badanie światłowodów Materiały przeznaczone dla studentów Informatyki Stosowanej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie apertury numerycznej,

Bardziej szczegółowo

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH

SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

Ciekłokrystaliczne światłowody fotoniczne

Ciekłokrystaliczne światłowody fotoniczne Światło od zawsze fascynuje człowieka warunkuje ono jego istnienie. Nic więc dziwnego, że człowiek sięgnął po nie wykorzystują światło jako najszybszego posłańca promienie świetlne rozprzestrzeniają się

Bardziej szczegółowo

Pomiar tłumienności światłowodów włóknistych

Pomiar tłumienności światłowodów włóknistych LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:

Bardziej szczegółowo

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17

Bardziej szczegółowo

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych

Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej. Zakład Optoelektroniki. Laboratorium Elementów i Systemów Optoelektronicznych Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej Zakład Optoelektroniki Laboratorium Elementów i Systemów Optoelektronicznych Instrukcja do ćwiczenia: BADANIE PARAMETRÓW PASYWNYCH

Bardziej szczegółowo

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Interferometry światłowodowe Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Wprowadzenie Układy te stanowią nową klasę czujników, gdzie podstawowy mechanizm

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Ciekłe kryształy. - definicja - klasyfikacja - własności - zastosowania

Ciekłe kryształy. - definicja - klasyfikacja - własności - zastosowania Ciekłe kryształy - definicja - klasyfikacja - własności - zastosowania Nota biograficzna: Odkrywcą był austriacki botanik F. Reinitzer (1888), który został zaskoczony nienormalnym, dwustopniowym sposobem

Bardziej szczegółowo

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design

Podstawy prowadzenia światła we włóknach oraz ich budowa. Light-Guiding Fundamentals and Fiber Design Podstawy prowadzenia światła we włóknach oraz ich budowa Light-Guiding Fundamentals and Fiber Design Rozchodzenie się liniowo-spolaryzowanego światła w światłowodzie Robocza definicja długości fali odcięcia

Bardziej szczegółowo

Światłowody telekomunikacyjne

Światłowody telekomunikacyjne Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie

Bardziej szczegółowo

Wzmacniacze optyczne ZARYS PODSTAW

Wzmacniacze optyczne ZARYS PODSTAW Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH

TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH TŁUMIENIE ŚWIATŁA W OŚRODKACH OPTYCZNYCH Jednym z parametrów opisujących właściwości optyczne światłowodów jest tłumienność. W wyniku zjawiska tłumienia, energia fali elektromagnetycznej niesionej w światłowodzie

Bardziej szczegółowo

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet

http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet IV. Światłowody BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Literatura 2 3 Historia i uwarunkowania Podstawowe elementy: 1. Rozwój techniki laserowej (lasery półprzewodnikowe, modulacja,

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Typy światłowodów: Technika światłowodowa

Typy światłowodów: Technika światłowodowa Typy światłowodów: Skokowy wielomodowy Gradientowy wielomodowy Skokowy jednomodowy Zmodyfikowany dyspersyjnie jednomodowy Jednomodowy utrzymujący stan polaryzacji Swiatłowody fotoniczne Propagacja światła

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional

Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Fotonika Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Plan: Jednowymiarowe kryształy fotoniczne Fale Blocha, fotoniczna struktura

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Pracownia Optyki Nieliniowej

Pracownia Optyki Nieliniowej Skład osobowy: www.if.pw.edu.pl/~nlo Kierownik pracowni: Prof. dr hab. inż. Mirosław Karpierz Kierownik laboratorium Dr inż. Urszula Laudyn Dr inż. Michał Kwaśny Dr inż. Filip Sala Dr inż. Paweł Jung Doktoranci:

Bardziej szczegółowo

FIZYKA LASERÓW XIII. Zastosowania laserów

FIZYKA LASERÓW XIII. Zastosowania laserów FIZYKA LASERÓW XIII. Zastosowania laserów 1. Grzebień optyczny Częstość światła widzialnego Sekunda to Problemy dokładności pomiaru częstotliwości optycznych Grzebień optyczny linijka częstotliwości Laser

Bardziej szczegółowo

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD

Plan wykładu. 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Plan wykładu 1. Budowa monitora LCD 2. Zasada działania monitora LCD 3. Podział matryc ciekłokrystalicznych 4. Wady i zalety monitorów LCD Monitor LCD Monitor LCD (ang. Liquid Crystal Display) Budowa monitora

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny

Autokoherentny pomiar widma laserów półprzewodnikowych. autorzy: Łukasz Długosz Jacek Konieczny Autokoherentny pomiar widma laserów półprzewodnikowych autorzy: Łukasz Długosz Jacek Konieczny Systemy koherentne wstęp Systemy transmisji światłowodowej wykorzystujące podczas procesu transmisji światło

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery światłowodowe Źródło: www.jakubduba.pl Światłowód płaszcz n 2 n 1 > n 2 rdzeń n 1 zjawisko całkowitego wewnętrznego odbicia Źródło:

Bardziej szczegółowo

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze

Bardziej szczegółowo

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Mikro optyka MO Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Systemy bazujące na mikrooptyce Zalety systemów MO duże macierze wysoka dokładność pozycjonowania

Bardziej szczegółowo

Technologia elementów optycznych

Technologia elementów optycznych Technologia elementów optycznych dr inż. Michał Józwik pokój 507a jozwik@mchtr.pw.edu.pl Część 5 rysunek elementu optycznego Polskie Normy PN-ISO 10110-1:1999 Optyka i przyrządy optyczne -- Przygotowywanie

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

DOPPLEROWSKA ANEMOMETRIA LASEROWA (L D A)

DOPPLEROWSKA ANEMOMETRIA LASEROWA (L D A) DOPPLEROWSKA ANEMOMETRIA LASEROWA (L D A) Dopplerowska anemometria laserowa (LDA) jest techniką pomiarową umożliwiająca pomiar chwilowej prędkości przepływu poprzez pomiar przesunięcia częstotliwości światła

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie

Bardziej szczegółowo

Siatka spiętrzająca opis czujnika do pomiaru natężenia przepływu gazów. 1. Zasada działania. 2. Budowa siatki spiętrzającej.

Siatka spiętrzająca opis czujnika do pomiaru natężenia przepływu gazów. 1. Zasada działania. 2. Budowa siatki spiętrzającej. Siatka spiętrzająca opis czujnika do pomiaru natężenia przepływu gazów. 1. Zasada działania. Zasada działania siatki spiętrzającej oparta jest na teorii Bernoulliego, mówiącej że podczas przepływów płynów

Bardziej szczegółowo

Łączenie włókien światłowodowych spawanie światłowodów. Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db

Łączenie włókien światłowodowych spawanie światłowodów. Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db Łączenie włókien światłowodowych spawanie światłowodów Złączki 0,2 1 db Spawy mechaniczne 0,05 0,2 db Spawanie 0,05 0,1 db Spawy mechaniczne 1. Elastomeric Lab Splice. Umożliwia setki połączeń 2. 3M Fibrlok.

Bardziej szczegółowo

Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach

Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach optycznie czynnych. Zasadniczo składa się on z dwóch filtrów polaryzacyjnych: polaryzator i analizator, z których każdy

Bardziej szczegółowo

Obecnie są powszechnie stosowane w

Obecnie są powszechnie stosowane w ŚWIATŁOWODY Definicja Światłowód - falowód służący do przesyłania promieniowania świetlnego. Pierwotnie miał postać metalowych rurek o wypolerowanych ściankach, służących do przesyłania wyłącznie promieniowania

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

Dyspersja światłowodów Kompensacja i pomiary

Dyspersja światłowodów Kompensacja i pomiary Dyspersja światłowodów Kompensacja i pomiary Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem

Bardziej szczegółowo

KURTYNY POWIETRZNE FRICO SERIA AC-600.

KURTYNY POWIETRZNE FRICO SERIA AC-600. KURTYNY PWIETRZNE FRI SERIA A-00. 2 HARAKTERYSTYKA GÓLNA Kaptur wylotowy Górny tłumik Zespół wentylatorów Dolny tłumik Kurtyny serii A-00 wytwarzają bardzo efektywną zasłonę powietrzną, ponieważ strumień

Bardziej szczegółowo