LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH"

Transkrypt

1 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Termin wprowadzający Zapoznanie z Laboratorium oraz szkolenie BHP Z tą instrukcją studenci przychodzą już na pierwsze zajęcia. Dostępna jest na stronie: oraz w punkcie ksero w budynkuc-1. 1 Ustalenia organizacyjne Obecność na pierwszym terminie zajęć jest bezwzględnie obowiązkowa ze względu na szkolenie BHP. Bez zaliczenia szkolenia nie można uczestniczyć w dalszych zajęciach. Kierownik Laboratorium: dr inż. Waldemar Oleszkiewicz, p. 206, C-2 Opiekun Laboratorium: Ryszard Ciechanowski, p. 413a, C Przebieg ćwiczeń i warunki zaliczenie laboratorium A. Organizacja grupy - studenci wykonują ćwiczenia w Laboratorium (sala 218 oraz sala 413, C-2) w zespołach 2-osobowych. W terminie określonym harmonogramem grupa studencka wykonuje ćwiczenie wg numeracji zgodnej z programem Laboratorium Przyrządów Półprzewodnikowych oraz w sali zgodnie z harmonogramem. B. Realizacja programu Laboratorium 1. Studenta obowiązuje, po uprzednim przygotowaniu się, wykonanie i zaliczenie czterech ćwiczeń określonych programem LPP. Instrukcje do ćwiczeń udostępnione są na stronie laboratorium oraz w punkcie ksero w budynku C Student nie może w semestrze przekroczyć jednej nieobecności. Przekroczenie tej liczby wymagać będzie (w sytuacjach szczególnych i udokumentowanych) zgody Dziekana na kontynuację zajęć w semestrze. 3. Sprawdzenie stopnia przygotowania do zajęć odbywać się będzie w postaci kartkówek bądź odpowiedzi ustnych. Oceniana też będzie poprawność oraz sprawność wykonania ćwiczenia. 4. Grupa ćwiczeniowa wykonuje jedno sprawozdanie oddawane w terminie zajęć (papier formatu A3 - papier kancelaryjny, opieczętowany pieczątką dostępną w laboratorium). Sprawozdanie powinno zawierać: zapis wyników pomiarów wykreślonych w czasie trwania laboratorium i opisanych zależności funkcyjnych (typ badanego elementu, właściwy opis osi wykresu z podaniem wielkości mierzonych i ich jednostek}, 1

2 wyniki obliczeń wykonanych na polecenie prowadzącego zajęcia (dokumentowane podpisem) z przedstawieniem sposobu obliczania oraz określeniem na wykresach przedziałów zmian wartości mierzonych, które są w nich wykorzystywane, ocenę pomiarów i wnioski odnoszące się do poprawności wykonania pomiarów, właściwości badanych elementów (z uwzględnieniem danych katalogowych badanych elementów). Sprawozdanie, po ocenie przez prowadzącego, jest udostępnione do wglądu studentom w terminie następnych zajęć, po czym przechowywane jest przez Prowadzącego do końca semestru. 5. Odrabianie ćwiczeń nie zrealizowanych możliwe jest tylko w tygodniu odróbczym. Terminy zajęć odróbczych określone zostaną w tygodniu poprzedzającym ostatnie zajęcia kursowe w semestrze. 6. W czasie trwania ostatnich zajęć kursowych przeprowadzona zostanie wśród studentów, zgodnie z zaleceniem Dziekana Wydziału, anonimowa ankieta dotycząca oceny zajęć. C. Zasady porządkowe obowiązujące w Laboratorium. Studenta wykonującego pomiary w Laboratorium Przyrządów Półprzewodnikowych obowiązuje przestrzeganie przepisów BHP związanych z obsługą urządzeń elektrycznych. Informacje dotyczące uszkodzeń bądź nieprawidłowości w funkcjonowaniu urządzeń studenci zgłaszają prowadzącemu zajęcia. Urządzenia uszkodzone należy odstawić na miejsce oznaczone Urządzenia uszkodzone D. Do dyspozycji studentów wykonujących ćwiczenia pozostają: urządzenia do sprawdzenia poprawności działania badanych elementów (zaleca się sprawdzanie elementów przed zmontowaniem układu pomiarowego), podręczny katalog elementów elektronicznych, instrukcje obsługi urządzeń wykorzystywanych w pomiarach (wydawane przez prowadzącego), stanowisko do wylutowywania bądź wlutowywania elementów (po operacji lutowania na płytce pomiarowej przez studentów płytka powinna być koniecznie skontrolowana przez prowadzącego zajęcia). Studenci zobowiązani są do posiadania papieru milimetrowego, papieru do drukarki oraz papieru z podziałką w układzie logarytmicznym oraz logarytmiczno-liniowym (wzorzec A4 do skopiowania dostępny w punkcie ksero C-1, na stronie internetowej laboratorium), na każdych zajęciach laboratoryjnych. Studenci zgłaszają prowadzącemu zajęcia uzyskane wyniki pomiarów (nawet cząstkowe) przy zestawionym układzie i włączonym stanowisku pomiarowym. Po wykonaniu pomiarów grupa laboratoryjna zobowiązana jest do pozostawienia porządku na stanowisku tj.: rozłączenia układów pomiarowych, wyłączenia zasilania urządzeń, ułożenia przewodów (wg ich kolorów) w uchwytach, Prowadzący odbiera wykonane sprawozdania przy stanowisku pomiarowym sprawdzając czy pozostawiono porządek i czy zostało ono wyłączone. 2

3 1.2 Tematyka ćwiczeń Poszczególne ćwiczenia poświęcone są badaniu parametrów typowych przyrządów półprzewodnikowych (elementów elektronicznych i optoelektronicznych) oraz układów scalonych. Charakteryzacja (opis) elementu elektronicznego polega najczęściej na przedstawieniu jego charakterystyki prądowo-napięciowej, oznaczanej jako I-U lub I=f(U), a także określeniu parametrów (dopuszczalnych, typowych), które są ważne z punktu widzenia zastosowania danego elementu w układach. Oprócz elementarnych charakterystyk I-U, w kolejnych ćwiczeniach, będą mierzone także charakterystyki częstotliwościowe i parametry układów wzmacniających oraz charakterystyki przełączania elementów i układów cyfrowych. 2 Przyrządy pomiarowe Stanowiska pomiarowe w laboratorium zestawione są z typowych przyrządów pomiarowych i urządzeń, z których działaniem i obsługą należy się bezwzględnie zapoznać. Do podstawowych przyrządów należą: - zasilacze napięcia stałego pracujące ze stabilizacją napięcia lub prądu - multimetry cyfrowe, z możliwością pomiaru wartości: I, U, R - źródła sygnałów zmiennych generatory - charakterografy, czyli regulowane zasilacze kalibrowane współpracujące z oscyloskopem - oscyloskopy cyfrowe połączone z drukarkami do kopiowania obrazu ekranu Niektóre ćwiczenia prowadzone są z pomocą zestawów komputerowych z magistralą GPIB do zbierania i obróbki danych pomiarowych. 3 Pomiary charakterystyki prądowo-napięciowej Pomiar charakterystyki I-U danego elementu polega na wymuszeniu przepływu prądu przez element poprzez przyłożenie do elementu napięcia. Wykonując, w określony sposób, sekwencję pomiarów otrzymuje się zbiór odpowiadających sobie wartości prądów i napięć tworzące punkty charakterystyki I-U. Pomiar można wykonać w sposób dyskretny poprzez ustalanie konkretnych wartości prądu lub napięcia i odczytywanie tej drugiej (napięcia lub prądu) lub w sposób ciągły korzystając z zasilacza dającego narost napięcia lub prądu w z góry ustalony sposób. Charakterystyki I-U - jak mówimy popularnie - zdejmuje się umieszczając badany element w układzie pomiarowym, który z reguły zawiera zasilacz (źródło napięcia lub prądu), rezystory pomocnicze ( np. ograniczające prąd w obwodzie) oraz mierniki prądu i napięcia. W zależności od stosowanej metody pomiarowej wykorzystuje się różne zasilacze oraz przyrządy pomiarowe. Na przykład: przyrządem do pomiaru napięcia może być woltomierz cyfrowy, ale także oscyloskop lub rejestrator przebiegu napięciowego. Wykonując pomiary PRZESTRZEGAJ PRZEPISÓW BHP związanych z obsługą urządzeń elektrycznych. 3

4 W kolejnych punktach zostaną omówione metody pomiaru charakterystyk I-U stosowane podczas ćwiczeń. 3.1 Metoda techniczna pomiaru charakterystyk prądowo-napięciowych Prostą metodą wykorzystywaną do pomiaru charakterystyk prądowo-napięciowych jest metoda techniczna. Polega ona na wykonaniu szeregu pomiarów prądów i napięć dla kolejnych punktów charakterystyki, a następnie naniesieniu wyników tych pomiarów na wykres I-U. Jako źródło zasilania układu pomiarowego używa się zasilacza laboratoryjnego z regulowanym napięciem wyjściowym, z możliwością ustawienia ograniczenia prądowego (np. zasilacz P317). Schemat układu pomiarowego, stosowanego w tej metodzie, przedstawiono na rys.1. Zastosowane mierniki prądu i napięcia to multimetry cyfrowe. 1kW ma Zasilacz P317 badany element? V Rys. 1: Schemat układu do pomiaru charakterystyki I-U metodą techniczną. Szeregowo włączony do obwodu rezystor 1 kw ułatwia płynne wymuszenie przepływu przez badany element prądu o wymaganym natężeniu. Jednocześnie rezystor ogranicza prąd w obwodzie dla danego napięcia zasilacza, przez co zmniejsza prawdopodobieństwo przypadkowych uszkodzeń elementu badanego wynikających z nieprawidłowości zestawienia układu pomiarowego. Odpowiednią wartość natężenia prądu uzyskuje się przez regulację napięcia zasilacza laboratoryjnego. Wartość natężenia prądu płynącego w układzie będzie wynikała ze spadku napięcia na rezystorze 1 kw. Należy zwrócić uwagę na nominalną moc rezystora. Najczęściej stosowane w tym układzie są rezystory o mocy 1 W. Wówczas uwaga: nie wolno przekroczyć 1 W mocy traconej w rezystorze. Wiadomo, że dla rezystora moc, P: 2 P = I R Ţ I max = P R max = 1W 1000W = 0,032 A = 30 ma Wynika z tego, że w czasie pomiarów konieczne jest ustawienie ograniczenia prądowego w zasilaczu na 30 ma, lub mniej, gdy badany element wymaga ograniczenia prądowego na niższym poziomie. Jeżeli potrzebne jest zbadanie charakterystyki dla większych wartości natężenia prądu niż 30 ma, można zamienić rezystor na 100 W (zastanówmy się, jaki będzie wówczas dopuszczalny prąd w obwodzie?) lub usunąć z układu rezystor, a wymagane natężenie prądu uzyskać przez odpowiednie ustawienie ograniczenia prądowego w zasilaczu pracującym stale w trybie ograniczenia prądowego. 4

5 3.2 Rejestrator Rejestrator jest urządzeniem zapisującym przebiegi zmian napięcia podawanego na dwa wejścia rejestratora: X oraz Y. Zapis za pomocą pisaka dokonywany jest w układzie współrzędnych Y-X. Jeśli chcemy zmierzyć i wyrysować charakterystykę prądowonapięciową elementu elektronicznego (np. diody), to możemy posłużyć się układem przedstawionym na rys.3. Ponieważ rejestrator, podobnie jak oscyloskop, posiada jedynie wejścia napięciowe pomiar prądu elementu badanego musi się odbywać metodą pośrednią, przy użyciu rezystora pomiarowego (analogicznie jak w przypadku omówionym dla charakterografu). Prąd I płynący przez rezystor R, włączony szeregowo z elementem badanym D, wywołuje spadek napięcia Uy, który jest mierzony na wejściu Y rejestratora. W zależności od spodziewanej wartości prądu dobieramy wartość rezystora R oraz czułość napięciową wejścia Y. Na przykład: w zakresie wartości prądu kilku ma, stosując rezystor R=10 W i czułość wejścia 10 mv/cm uzyskujemy czułość prądową przebiegu 1 ma/cm na osi Y wykresu charakterystyki I-U. Natomiast spadek napięcia U x na elemencie badanym D mierzony jest bezpośrednio na wejściu X rejestratora. Konieczny jest dobór właściwej czułości napięciowej wejścia X (na przykład 50 mv/cm dla diody spolaryzowanej w kierunku przewodzenia). Rys.3. Układ do pomiaru charakterystyki I-U diody z wykorzystaniem rejestratora. 5

6 3.3 Wykorzystanie multimetru VC-10T, 1321 lub 1331 jako źródła prądowego Większość multimetrów cyfrowych (np. VC-10T, 1321, 1331) pracując w trybie pomiaru rezystancji, (czyli jako omomierz) mierzy i pokazuje na wyświetlaczu spadek napięcia na badanym elemencie wywołany przepływem prądu ze źródła prądowego wbudowanego w multimetr. Oprócz funkcji pomiaru rezystancji można tę cechę przyrządu wykorzystać do pomiaru charakterystyk prądowo-napięciowych dla bardzo małych prądów. Multimetry VC-10T, 1321 i 1331 posiadają wewnętrzne źródło prądowe o wydajności zależnej od wybranego zakresu pomiarowego rezystancji; patrz tabela 2. Tabela 2. Wartości natężenia źródła prądowego multimetrów cyfrowych. Zakres omomierza 200 W 2 kw 20 kw 200 kw 1 MW 2 MW 20 MW VC-10T 10 ma 1 ma 100 ma 10 ma 1 ma ma 1 ma 100 ma 10 ma 1 ma 100 na ma 1 ma 100 ma 10 ma 1 ma 100 na Badany element podłączany jest pomiędzy zaciski HI ( W w miernikach 1321, 1331) i LO (odpowiednio: N ). Przepływający prąd wywołuje na badanym elemencie spadek napięcia o polaryzacji przeciwnej, niż wynikałoby to z oznaczeń zacisków multimetru, czyli: + na zacisku LO ( N ), ľ na zacisku HI ( W ). Liczba wyświetlana przez multimetr odpowiada napięciu mierzonemu na badanym elemencie, wyrażonemu w miliwoltach, przy czym należy brać pod uwagę jedynie cyfry, a nie przecinek, np. wyświetlana wartość 12,34 oznacza, że spadek napięcia na badanym elemencie, przy natężeniu prądu wynikającym z wybranego zakresu pomiarowego, wynosi 1234 mv, wyświetlana wartość 0076 oznacza spadek napięcia 76 mv. Ponieważ dla tych multimetrów, pracujących w trybie pomiaru rezystancji, zakres prawidłowo wskazywanych napięć wynosi 0 2,999 V nadają się one do pomiaru spadku napięcia na półprzewodnikowych złączach p-n spolaryzowanych w kierunku przewodzenia. Przekroczenie zakresu wskazań woltomierza, 2999 mv (a praktycznie wyświetlenie liczby 3000) oznacza, że źródło prądowe nie zapewnia ustalonej dla danego zakresu wartości prądu. 4 Rezystory i kondensatory 4.1 Rezystory Rezystory (oporniki) to najczęściej spotykane elementy bierne w układach. Wykonywane są w różnych odmianach, przeważnie jako: - warstwowe metalowe cienka warstwa naparowanego metalu (np. CrNi) na korpusie ceramicznym, może być nacinana w celu zwiększenia długości ścieżki rezystywnej - rezystory węglowe - cienka warstwa grafitu na korpusie ceramicznym, - grubowarstwowe rezystywna warstwa cermetowa (cermet - mieszanina ceramiki i tlenków metali) nakładana np. metodą sitodruku na korpusy ceramiczne. W ten sposób wytwarzane są także rezystory miniaturowe do montażu powierzchniowego. - rezystory nawijane drutowe - szczególnie wytrzymałe dla dużych mocy. 6

7 Rezystor jest elementem liniowym, tzn jego charakterystyka I-U jest prostą, co oznacza, że rezystancja (oporność) jest stała i nie zależy od wartości prądu, napięcia czy innych czynników. Innymi słowy, niezależnie od warunków, spełnione jest prawo Ohma: R = U/I [W =V/A] W innym przypadku mamy do czynienia z rezystorami nieliniowymi, np.: fotorezystory, termistory, warystory. Elementy te będą również badane w czasie ćwiczeń. Podstawowe parametry oporników to: rezystancja nominalna, tolerancja (maksymalna odchyłka od rezystancji nominalnej wyrażona w procentach), moc dopuszczalna, napięcie graniczne (dopuszczalne), temperaturowy współczynnik rezystancji (TWR), który określa zmiany rezystancji zachodzące pod wpływem temperatury. Rezystory produkuje się masowo i klasyfikuje w standardowych szeregach wartości rezystancji i związanych z nimi określonych tolerancjach. Wartości znamionowe rezystancji ułożone są w szeregi (E) z dzielnikiem : q= 10, gdzie n=6,12,24,48,96,192; n oznacza liczbę wartości nominalnych w ramach jednej dekady uzyskanych przez kolejne dzielenie, poczynając od 10/q, 10/q 2, 10/q 3 itd. Przykładowo, szeregowi o oznaczeniu E12 odpowiadają wielkości: n=12, q=1,21 i wartości nominalne: 1 1,2 1,5 1,8 2,2 2,7 3,3 3,9 4,7 5,6 6,8 8,2 10 wyrażające liczbę jednostek (W, kw lub MW) oraz tolerancja: ±10% (zwróćmy uwagę jaki jest możliwy maksymalny rozrzut sąsiadujących wartości nominalnych dla tej tolerancji). Biorąc pod uwagę zakres wymaganych wartości rezystorów do różnych zastosowań od 10 W do 100 MW, daje to siedem dekad, czyli 84 wartości oferowanych oporników w tym typoszeregu. Szereg E48 będzie miał 48 nominalnych wartości w ramach jednej dekady, a tolerancję ±5%, (Jaka tolerancja będzie dla szeregu E96?). Istnieje też szereg R40 gdzie n=40. Typowe moce nominalne to 0,125 W, 0,25 W, 0,5 W, 1 W oraz 2 W. Ze względu na różną moc nominalną rezystory maja różne gabaryty. Oznaczenia (cechy) na rezystorach o dużych rozmiarach nanoszone są za pomocą symboli np.: 120 = 120W, 15k = 15kW, 1k1 = 1,1kW, 1M =1MW, ale 0R1 = 0,1W oraz 0E5 = 0,5W. Na małych opornikach zazwyczaj nanosi się kody paskowe w postaci 3 lub 4 barwnych pasków. Pierwsze dwa paski oznaczają dwie znaczące cyfry wartości, trzeci pasek mnożnik wartości, a czwarty oznacza tolerancję. Poniżej, w tabeli 2, podano znaczenie barw pasków. Tabela 2. Kody paskowe oznaczeń rezystorów kolor paska cyfra mnożnik tolerancja [± %] czarny brązowy czerwony pomarańcz żółty zielony ,5 niebieski ,25 fioletowy ,1 szary biały złoty srebrny

8 Osobnym rodzajem rezystorów są rezystory regulowane: potencjometry lub reostaty, posiadające trzy wyprowadzenia, jedno podłączone do ślizgacza przesuwanego po ścieżce rezystywnej. 4.2 Kondensatory Kondensator składa się z dwóch przewodzących płytek (okładek) i dielektryka wypełniającego przestrzeń między płytkami. Właściwością kondensatora jest zdolność ładowania go ładunkiem elektrycznym pod wpływem przyłożonego napięcia. Pojemność kondensatora C wyraża się wzorem: C = Q/U, jednostka pojemności to farad [F = C/V] (kulomb/wolt) Pojemności kondensatorów spotykanych w układach elektronicznych są dużo mniejsze niż 1 F, i wyrażane są zazwyczaj w pf, nf oraz mf. Szeregi wartości nominalnych kondensatorów ułożone są podobnie do omówionych dla rezystorów. Do najważniejszych parametrów kondensatorów, oprócz wartości znamionowej pojemności, należą: dopuszczalne napięcie pracy (dla większych grozi przebicie), tolerancja, stratność (tgd) oraz temperaturowy współczynnik pojemności (TWC). Wyróżnia się wiele typów kondensatorów związanych z konstrukcją i zastosowanym rodzajem dielektryka, (od którego bierze się ich nazwa): - Kondensatory z tworzywa sztucznego (stała dielektryczna 2-3); dielektryk w postaci folii poliestrowej, polistyrenowej, poliwęglanowej (te mają szczególnie małą stratność i dobrą stabilność): elektrody z folii metalowej lub plastikowej metalizowanej. Najczęściej mają konstrukcję zwijanego rulonu folii, dzięki czemu uzyskuje się duże pojemności (zakres od 10 pf do 100 mf) oraz wysokie napięcia pracy do 1000 V. Popularne, bo tanie w produkcji. - Kondensatory papierowe, historycznie bardzo popularne, obecnie stosowane wyłącznie jako k. odkłócające, a to dzięki właściwości samoregeneracji (odporność papieru na przebicia impulsowe) - Kondensatory ceramiczne produkowane z jednej lub wielu płytek ceramicznych. Stosowana ceramika dzieli się na trzy klasy: klasa 1 o małej stałej dielektrycznej, pojemności od 0,47 pf do 560 pf, klasa 2 - o dużej stałej dielektrycznej, pojemności od 10 pf do 10 mf, klasa 3 ceramika z materiałów ferroelektrycznych o ekstremalnie wysokiej stałej dielektrycznej; pojemności nawet do 100 mf, ale niskie napięcia pracy. - Kondensatory mikowe (mika to minerał pozwalający łupać się na cienkie płatki) o bardzo dobrych właściwościach: mała stratność, wysoka stabilność, wysokie napięcia pracy. Są jednak duże i stosunkowo drogie. Powyższe typy kondensatorów są niepolaryzowalne, to znaczy biegunowość podłączenia nie odgrywa roli. Inaczej jest z kondensatorami elektrolitycznymi. - Kondensatory elektrolityczne (elektrolity) o elektrodach aluminiowych lub tantalowych. Jedna z elektrod (anoda) jest pokryta tlenkiem, a przestrzeń pomiędzy elektrodami jest wypełniona elektrolitem. Konieczne jest, więc zachowanie biegunowości kondensatora. Obudowa kondensatora połączona jest do wyprowadzenia bieguna ujemnego (katody). W przypadku odwrotnego podłączenie istnieje groźba rozerwania obudowy ze względu na gazowanie elektrolitu. Kondensatory aluminiowe osiągają bardzo duże pojemności, nawet do 500 mf, ale mają niskie napięcia pracy, duże wymiary i ulegają starzeniu (ich parametry pogarszają się z upływem czasu). Nowsze rozwiązania to tzw elektrolity suche wytrzymałe na zmiany temperatur i odporne dużo bardziej na starzenie. Wytwarzane o pojemnościach do 2200 mf. Natomiast kondensatory elektrolityczne tantalowe mają dużo lepsze parametry od aluminiowych: wyższe napięcia przebicia, mniejsze upływności i stratność oraz znacznie mniejsze wymiary (większa stała dielektryczna). Produkowane w zakresie pojemności do 1000 mf. 8

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 1 oraz nr 2 Zapoznanie z Laboratorium oraz szkolenie BHP. Zasady

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Termin wprowadzający Zapoznanie z Laboratorium oraz szkolenie BHP Z tą instrukcją studenci przychodzą już na pierwsze zajęcia. Dostępna jest na stronie: http://156.17.46.1/lpp/,

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki

Wydział Elektroniki Mikrosystemów i Fotoniki Wydział Elektroniki Mikrosystemów i Fotoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, Iwona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław Synowiec, Bogusław

Bardziej szczegółowo

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Kondensatory. Konstrukcja i właściwości

Kondensatory. Konstrukcja i właściwości Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA

LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA 1. Lutowanie lutowania ołowiowe i bezołowiowe, przebieg lutowania automatycznego (strefy grzania i przebiegi temperatur), narzędzia

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDIA DZIENNE e LABOATOIM PZYZĄDÓW PÓŁPZEWODNIKOWYCH Ćwiczenie nr Pomiar częstotliwości granicznej f T tranzystora bipolarnego Wykonując

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Badanie półprzewodnikowych elementów bezzłączowych

Badanie półprzewodnikowych elementów bezzłączowych Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia

2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia 2.3. Bierne elementy regulacyjne 2.3.1. rezystory, Rezystory spełniają w laboratorium funkcje regulacyjne oraz dysypacyjne (rozpraszają energię obciążenia) Parametry rezystorów. Rezystancja znamionowa

Bardziej szczegółowo

Badanie elementów składowych monolitycznych układów scalonych II

Badanie elementów składowych monolitycznych układów scalonych II 1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE Klasa: 2Tc Technik mechatronik Program: 311410 (KOWEZIU ) Wymiar: 4h tygodniowo Na ocenę dopuszczającą uczeń: Zna

Bardziej szczegółowo

Badanie bezzłączowych elementów elektronicznych

Badanie bezzłączowych elementów elektronicznych Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 2.0 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości:

OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości: REZYSTOR Opornik (rezystor) najprostszy, rezystancyjny element bierny obwodu elektrycznego. Jest elementem liniowym: spadek napięcia jest wprost proporcjonalny do prądu płynącego przez opornik. Przy przepływie

Bardziej szczegółowo

Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych

Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych POLITECHNIKA WROCŁAWSKA Wydział Elektryczny Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Podstaw Elektroniki bud. A-5 s.211 (a,b) Skrócony opis dostępnych na stanowiskach studenckich makiet

Bardziej szczegółowo

Technik elektronik 311[07] Zadanie praktyczne

Technik elektronik 311[07] Zadanie praktyczne 1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C300 018

ELEMENTY ELEKTRONICZNE TS1C300 018 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Laboratorum 4 Dioda półprzewodnikowa

Laboratorum 4 Dioda półprzewodnikowa Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

DIODY PÓŁPRZEWODNIKOWE

DIODY PÓŁPRZEWODNIKOWE Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik 1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony

Bardziej szczegółowo

ZSME E. Karol Kalinowski kl. 1e 2010 / 2011

ZSME E. Karol Kalinowski kl. 1e 2010 / 2011 ZSME E T K Karol Kalinowski kl. 1e 2010 / 2011 Slajd 1: Historia kondensatorów Odkrycie kondensatora przypisuje się Pieterowi van Musschenbroekowi w styczniu 1746 roku w Lejdzie (Holandia). Nastąpiło ono

Bardziej szczegółowo

Pomiar podstawowych wielkości elektrycznych

Pomiar podstawowych wielkości elektrycznych Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Andrzej Koźmic, Natalia Kędroń 2 Cel ogólny: Wyznaczenie charakterystyki prądowo-napięciowej opornika i żarówki Cele operacyjne: uczeń,

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Ćwiczenie 4 Pomiar prądu i napięcia stałego

Ćwiczenie 4 Pomiar prądu i napięcia stałego Ćwiczenie 4 Pomiar prądu i napięcia stałego Instrukcja do ćwiczenia laboratoryjnego opracowali: Łukasz Śliwczyński Witold Skowroński Karol Salwik ver. 3, 05.2019 1. Cel ćwiczenia Zapoznanie się z metodami

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

SENSORY i SIECI SENSOROWE

SENSORY i SIECI SENSOROWE SKRYPT DO LABORATORIUM SENSORY i SIECI SENSOROWE ĆWICZENIE 1: Pętla prądowa 4 20mA Osoba odpowiedzialna: dr hab. inż. Piotr Jasiński Gdańsk, 2018 1. Informacje wstępne Cele ćwiczenia: Celem ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY! 1. WSTĘP Instrukcja obsługi dostarcza informacji dotyczących bezpieczeństwa i sposobu użytkowania, parametrów technicznych oraz konserwacji

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO

SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek

Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Treść zadania praktycznego Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Opracuj projekt realizacji prac związanych z uruchomieniem i sprawdzeniem działania zasilacza impulsowego małej mocy

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

LABORATORIUM Miernictwa elementów optoelektronicznych

LABORATORIUM Miernictwa elementów optoelektronicznych Ćw. 4. Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM Miernictwa elementów optoelektronicznych Pomiary częstotliwościowe detektorów opis ćwiczenia Opracował zespół: pod kierunkiem Damiana Radziewicza

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 1 Temat: PRZYRZĄDY POMIAROWE Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Wprowadzenie

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 2 PRWO OHM. BDNIE DWÓJNIKÓW LINIOWYCH I NIELINIOWYCH . Cel ćwiczenia. - Zapoznanie się z właściwościami

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

1 Badanie aplikacji timera 555

1 Badanie aplikacji timera 555 1 Badanie aplikacji timera 555 Celem ćwiczenia jest zapoznanie studenta z podstawowymi aplikacjami układu 555 oraz jego działaniem i właściwościami. Do badania wybrane zostały trzy podstawowe aplikacje

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo