w stosunku do rozwi zania symetrycznego dla ca ego uk adu. d (x) dx 2 * kin -

Wielkość: px
Rozpocząć pokaz od strony:

Download "w stosunku do rozwi zania symetrycznego dla ca ego uk adu. d (x) dx 2 * kin -"

Transkrypt

1 Fizyka Kawatowa i Statystycza Wykad 5 Potecjay periodycze Powstawaie struktury pasmowej eergii Rozpatrzmy cig wzrastajcej liczby studi potecjau w staie podstawowym i poooych blisko siebie: Dla dwóch takich studi: symetrycze fukcje falowe ukadu studi okazuj si gadkim symetryczym zoeiem fukcji falowych staów podstawowych pojedyczej studi atysymetrycze fukcje falowe - takim samym atysymetryczym zoeiem Jak si okazuje rozwizaie atysymetrycze ma wiksz redi krzywiz - temu rozwizaiu odpowiada wic wiksza (średia) eergia kietycza: E ki = - - (x) * d m dx (x) dx w stosuku do rozwizaia symetryczego dla caego ukadu.

2 Fizyka Kawatowa i Statystycza Wykad 5 Gdy zbliamy dwie studie do siebie roie roszczepieie eergii staów wasych ukadu studi: gdy zika ciaa rozdzielajca studie zika wgbieie w staie symetryczym w obszarze pomidzy studiami. W efekcie jego eergia staje si isza i stau atysymetryczego jak a rysuku obok. W zbiorze N blisko siebie leżących okresowo ułożoych studi każda warto wasą eergii ukadu ma swój odpowiedik w zbiorze N wartoci wasych pojedyczej studi. Odstp pomidzy eergiami ukadu moe by iewielki - tworz oe pasmo eergetycze. Pasma eergii odgrywaj du rol w fizyce krysztaów gdzie z kadym wzem sieci moemy zwiza studi potecju. Studie te w krysztale uooe s okresowo co prowadzi do powstaia pasm eergii. Liczba biorcych udzia studi (wzów sieci) jest przy tym bardzo dua (0 3 ). Powoduje to, e odstpy pomidzy wartociami eergii w pamie s iezwykle mae (kwazi-cigy rozkad eergii w pasmie).

3 Fizyka Kawatowa i Statystycza Wykad 5 3 Oscylator harmoiczy w mechaice kwatowej Dotychczas aalizowalimy ukady, w których sia dziaaa tylko a graicy obszarów - bo tylko tam potecja ulega zmiaie. Najprostszym przypadkiem kiedy tak ie jest (a do tego bardzo waym jedowymiarowym modelem) jest oscylator harmoiczy, dla którego sia F = - k x ; k >0 osc osc To zaczy, e w rówaiu Schrödigera wystpuje potecja m V ( x )= kosc x = x Rówaie Schrödigera przyjmuje wic posta: - d m x (x)= E (x) m d x

4 Fizyka Kawatowa i Statystycza Wykad 5 4 Wprowadzamy zmiee bezwymiarowe: x = ; 0 = i otrzymujemy rówaie w postaci zredukowaej Rozwizaiem tego rówaia s fukcje ieelemetare - poszukuje si rozwizaia w postaci szeregu. Odgadujemy rozwizaie w postaci ( )= C e H( ) gdzie H(ξ) jest szeregiem potgowym - do wyzaczeia. Fukcja ekspoecjala w rowizaiu wzia si ze zbadaia postaci asympotyczej rówaia tj. dla moa zaiedba w rówaiu λ: - z rozizaiem w postaci ( )= C e 0 - ; m E = d ( ) ( - ) ( )=0 d - d ( ) - ( )=0 d

5 Fizyka Kawatowa i Statystycza Wykad 5 5 Wstawiamy pe posta rozwizaia do rówaia ruchu. Poiewa rowizaie asymptycze jest wszdzie iezerowe wic obie stroy rówaia moa przez ie podzieli. Otrzymuje si rówaie a szereg H(ξ): d H dh - ( - ) H = 0 d d Okazuje si, e rozwizaiem tego rówaia jest wielomia a ie szereg. Jest to tzw. wielomia Hermite a: Jak wida posta tego wielomiau zaley od liczby kwatowej (stopie wielomiau). H ( )=(- ) e e - Przykad dla = 0 H 0 = = H = ξ = H = 4ξ - = 3 H 3 = 8ξ 3 - ξ

6 Fizyka Kawatowa i Statystycza Wykad 5 6 Dlaczego wielomia a ie szereg ieskoczoy? Gdyby to był szereg ieskończoy: dla tej postaci rówaia a szereg H(ξ) gdy roie (stopie wielomiau!) to dla ξ = cost. (x) = C e H( ) A przecie fukcja falowa musi by skoczoa wszdzie. - Ale jaka powia by waciwa warto, a której aley oberwa szereg potgowy? Szczegóy rozumowaia moa zale a str podrczika A.Sukieickiego i A.Zagórksiego Fizyka ciaa staego. Istota sprawy : szukajc postaci dla szeregu aley jego ogól posta s j H( )= a j ; a 0 j=0 podstawi do rówaia a te szereg. 0 s 0 Aby to rówaie byo speioe wszystkie wspóczyiki przy wszystkich potgach ξ musz jedoczeie zika. ;

7 Fizyka Kawatowa i Statystycza Wykad 5 7 Okazuje si, e dla rozwaaej postaci rówaia tak jest gdy = 0 ; =, = 0,,,... a E Ale = wic widzimy, e eergia w kwatowym oscylatorze harmoiczym ma dozwoloe wartoci E = ( ) ; =0,,, a stay opisuje fukcja falowa: (x) = C e H ( ) Wioski: eergia kwatowego oscylatora harmoiczego jest skwatowaa w ajiszym staie kwatowym tj. dla = 0 eergia ukadu ie jest zerowa! E0= ) tak ie jest dla studi prostoktej ) sta podstawowy oscylatora kwatowego odpowiada tzw. drgaiom zerowym. Odgrywaj oe wa rol w przyrodzie p. gaz He ie pozwala si skropli tylko przy pomocy obiaia temperatury (trzeba zaczie zwikszy ciieie)

8 Fizyka Kawatowa i Statystycza Wykad 5 8 Istieie drga zerowych wyika z zasady ieozaczooci Heiseberga ajmiejsza eergia mechaicza oscylatora p = m x Ec m gdzie p x szukamy E c = mi. dla x= p m dla p= Ec= mi = Porówaie klasyczego oscylatora harmoiczego z jego kwatowym odpowiedikiem a) w oscylatorze kwatowym pooeie czstki okreloe jest przez gstoć prawdopodobieństwa (x) (x) 0 awet bardzo daleko od rodka waha x = 0 b) maksima (x) : dla ieparzystych wypadaj w pewej odlegoci od x = 0 dla parzystych - dla x = 0

9 Fizyka Kawatowa i Statystycza Wykad 5 9 Dopiero dla redia gsto prawdopodobiestwa przypomia rozkad klasyczy.

10 Fizyka Kawatowa i Statystycza Wykad 5 0 Rozwizywaie rówaia Schrödigera bywa kopotliwe i mude a czasem wrcz trude. Czy moa wyzaczy eergi oscylatora oraz jego fukcje wase bez uciekaia si do tego rówaia? Rozpatrzmy operator peej eergii oscylatora harmoiczego: p Hˆ ˆ = m xˆ m Wprowadza si astpujce operatory m pˆ = x ˆ i m = m xˆ - i pˆ m T trasformacj operatorow moa odwróci: x= ˆ ( a) ˆ m p= ˆ i m ( - a) ˆ Jakie reguy komutacyje speiaj wprowadzoe przez as operatory?

11 Fizyka Kawatowa i Statystycza Wykad 5 Zasada komplemetaroci wymaga aby Aby tak byo: [a,a ˆ ˆ ] = [a,a] ˆ ˆ = 0 [, ] = 0 [ x, ˆ p] ˆ = i Moemy teraz przedstawi operator Hamiltoa za pomoc owych operatorów p H ˆ ˆ = m xˆ m H ˆ = - ( - a ˆ aa) ˆ ˆ ( a ˆ aa) ˆ ˆ 4 4 H ˆ = ( a ˆ ) = ( a ˆ ) aa ˆ ˆ = Ostateczie formalie wyik trasformacji przypomia E = ( ) Zbadajmy wasoci operatora ( a ˆ ) =(H ˆ - ) =( E - )

12 Fizyka Kawatowa i Statystycza Wykad 5 Stwierdzamy: fukcja wasa oscylatora harmoiczego jest fukcj was operatora ( a ˆ ) jego warto wasa jest E - = Wiosek:operator ˆ = jest operatorem liczby obsadze Ses fizyczy operatorów operatorów â oraz a ˆ ˆ = = [H ˆ ] ˆ = [ E [a,a ˆ ˆ ]= ] = ( ) Operator liczby obsadze pokaza am, e fukcja â odpowiada staowi a ie : operator a ˆ jest wic operatorem kreacji Podobie moa wykaza (prosz to sobie sprawdzi!), e operatorâ jest operatorem aihilacji tz. ˆ = ( - )

13 Fizyka Kawatowa i Statystycza Wykad 5 3 A jak zale fukcj falow oscylatora? Operator aihilacji w dziaaiu a sta podstawowy (ajiszy!) oscylatora musi da zero: m d = x 0=0 m dx Jest to proste rówaie róiczkowe a ajiszy sta kwatowy oscylatora harmoiczego. Wszystkie wysze moa otrzyma z = ( ) 0! gdzie operator kreacji jest operatorem róiczkowym a ˆ = m x - ˆ d _ m dx Ruch harmoiczy czstki kwatowej Rozpatrzmy ruch czstki pod wpywem siy harmoiczej Czstk bdzie reprezetowa gaussowska paczka fal o zadaej szerekoci σ ze redim pdem rówym zeru oraz wartoci oczekiwa pooeia x 0 odpowiadajcej położeiu klasyczej czstki. Rozkadamy paczk falow (x) a fukcje bazy tj. fukcje wase oscylatora harmoiczego (x) = =0 c (x)

14 Fizyka Kawatowa i Statystycza Wykad 5 4 Rozwizaie zaleego od czasu rówaia Schrödigera z paczk fal (x) jako poczatkow fukcj falow w chwili t = 0: (x, t)= =0 c i (x) exp - E t gdzie E = ω ( ½) jest eergi oscylatora w staie. Sumowaie moa wykoa i otrzymuje si gsto prawdopodobiestwa (x,t) = exp 4 s c s si( t) c cos( t) Otrzymaliy rozkad Gaussa z oscylujac wartoci redi (t)= x cos ( t) x s 4 4 c (x - c x 0 ) oraz oscylujc szerokoci (t) = 4 ( t)4 4 0 si cos ( t) / ( )

15 Fizyka Kawatowa i Statystycza Wykad jest ozaczeiem wprowadzoym a pocztku rozwaa o oscylatorze m kwatowym. jest szerokoci stau podstawowego oscylatora. 0 Ksztat fukcji falowej odpowiadajcej czstce wedug aszego modelu oscyluje wewtrz oscylatora przy czym warto oczekiwaa prawdopodobiestwa zalezieia czstki zachowuje si dokadie tak jak dla czstki klasyczej szeroko rozkadu gstoci prawdopodobiestwa atomiast oscyluje z podwojo czstoci ω tylko gdy pocztkowa szeroko paczki fal σ = σ 0 to szeroko ta pozostaje staa. Taki sta azywamy staem koheretym oscylatora {hyperlik: Dla dowolej chwili czasu sta te jest staem o ajmiejszej ieozaczooci x p=. Sta podstawowy oscylatora harmoiczego jest szczególym staem koheretym - jest staem wasym ukadu. Ie (wysze) stay koherete ie s staami wasymi, lecz superpozycjami staów wasych oscylatora. Poiewa stay wase rói si eergi wic sta koherety (za wyjtkiem stau postawowego) jest superpozycja staów z róa liczb kwatów eergii.

16 Fizyka Kawatowa i Statystycza Wykad 5 6 Wagi z jakimi stay te wchodz do superpozycji s dae rozkadem Poissoa {hyperlik: < > -<> e! gdzie <> jest wartoci oczekiwa liczby kwatów eergii tak, e < > =< E > a <E> jest wartoci oczekiwa eergii oscylatora. Wpływ siły zewętrzej a oscylator harmoiczy: Gdy sia dziaa a oscylator harmoiczy w staie podstawowym to reaguje o przechodzc do iego stau koheretego (sta podstawowy jest z atury swojej ajiższym staem koheretym). Jeli w jakiej chwili sia przestaie dziaa to sta koherety oscyluje tak jak te a rysuku c) powyej. Stay koherete odgrywaj du rol w optyce kwatowej oraz w elektroice kwatowej. Stay a rys. a) i b) powyej ie s staami koheretymi. Oscylacje szerokoci rozkadu prawdopodobiestwa ozaczaj, e ieozaczoo jedej zmieej zmiejsza si okresowo kosztem drugiej. Z tego wzgldu stay koherete (zwae staami ciitymi) odgrywaj du rol w teorii pomiarów sabych sygaów.

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

> 1), wi c na mocy kryterium porównawczego szereg sin(n n)

> 1), wi c na mocy kryterium porównawczego szereg sin(n n) .65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach

Bardziej szczegółowo

Roy Jay Glauber, ojciec optyki kwantowej - Nagroda Nobla 2005 Polskie Towarzystwo Fizyczne Oddział Łódzki, 19 grudnia 2005 r.

Roy Jay Glauber, ojciec optyki kwantowej - Nagroda Nobla 2005 Polskie Towarzystwo Fizyczne Oddział Łódzki, 19 grudnia 2005 r. Roy Jay Glauber, ojciec optyki kwatowej - Nagroda Nobla 005 Polskie Towarzystwo Fizycze Oddział Łódzki, 19 grudia 005 r. Jarosław Bauer Katedra Fizyki Teoretyczej Uiwersytetu Łódzkiego Ul. Pomorska 149/153,

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych.

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych. Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. A. V. Aho, J.E. Hopcroft, J. D. Ullma - Projektowaie i aaliza

Bardziej szczegółowo

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -

Bardziej szczegółowo

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = =

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = = 32 (+) Jest to szereg o wyrazach dodatich Poadto wyraz ogóly tego szeregu jest zbie»y do 0, wi c waruek koieczy zbie»o±ci szeregu jest speªioy s (+) 2 s 2 s + 2 (2+) 2 + 2 3 2 + 6 3 6 + 6 4 6 2 3 s 3 s

Bardziej szczegółowo

Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi

Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy

Bardziej szczegółowo

Podr czniki. Fizyka 1

Podr czniki. Fizyka 1 Fizyka Wykad I Podrczniki Fizyka. I.W. Sawieliew, Wykłady z fizyki, Wyd. Naukowe PWN Warszawa 997. t. Mechanika i fizyka cząsteczkowa t. Elektryczność i magnetyzm, fale, optyka.. W. Bogusz, J. Garbarczyk,

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Widmo promieniowania elektromagnetycznego

Widmo promieniowania elektromagnetycznego Widmo promieiowaia elektromagetyczego Czułość oka człowieka Płaska fala elektromagetycza w próżi Ciało doskoale czare Prawo promieiowaia Kirchhoffa: Stosuek zdolości emisyjej do zdolości absorpcyjej jest

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Podstawy matematyki nansowej

Podstawy matematyki nansowej Podstawy matematyki asowej Omówimy tutaj odstawowe oj cia matematyki asowej. Jest to dobre miejsce, gdy» zagadieia te wi» si z ci gami, w szczególo±ci z ci giem arytmetyczym i geometryczym. Omówimy zagadieie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce a aklejk z kodem szkoy dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdajcego Sprawd, czy arkusz egzamiacyjy zawiera 4 stro (zadaia ) Ewetualy

Bardziej szczegółowo

Pytania nie mające charakteru pytań testowych

Pytania nie mające charakteru pytań testowych Umiejętość podaia poprawych i pełych odpowiedzi a pytaia ie mające charakteru pytań testowych,6,7,9,0,,3,4,5,6,7,8,,,4,7 oraz pytaia mające częściowo charakter pytań testowych,,4,5,6,7,9,0,,3,4, 5a,5b,6,8,,3,5,6,7,8,30,33,34,35,37,40,4,4,43,44,45,47,48a-e

Bardziej szczegółowo

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α, .. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg

Bardziej szczegółowo

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA etrala Komisja Egzamiacyja EGZAMIN MATURALNY 01 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceiaia odpowiedzi ZERWIE 01 Zadaie 1. (0 1) Obszar stadardów i iterpretowaie iformacji Opis wymaga Usuwaie iewymieroci

Bardziej szczegółowo

1. Wspó czynnik absorpcji materia u zale y od d ugo ci fali wiat a w nast puj cy sposób:

1. Wspó czynnik absorpcji materia u zale y od d ugo ci fali wiat a w nast puj cy sposób: Wstp do Optyki i Fizyki Materii Skondensowanej Zadania domowe 1/11 Jakiej dugoci fale wietlne s cakowicie odbijane od metalowego lustra? Zaoy, e atomy uoone s w prost sie kubiczn o staej a =.4 nm i kady

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Matematyczne podstawy kognitywistyki

Matematyczne podstawy kognitywistyki Matematycze podstawy kogitywistyki Jerzy Pogoowski Zakªad Logiki i Kogitywistyki UAM pogo@amu.edu.pl Struktury ró»iczkowe Jerzy Pogoowski (MEG) Matematycze podstawy kogitywistyki Struktury ró»iczkowe 1

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione Aaliza matematycza Notatki do wykªadu Mateusz Kwa±icki 7 Sumy i iloczyy uogólioe Dla dowolych liczb a k, a k+, a k+,..., a l okre±lamy sum uogólio i iloczy uogólioy: a k + a k+ + a k+ +... + a l, l a k

Bardziej szczegółowo

Elastyczno silników FIAT

Elastyczno silników FIAT ARCHIWU OTORYZACJI 4, pp. 319-35 (009) Elastyczo silików FIAT JANUSZ YSŁOWSKI, WAWRZYNIEC GOŁBIEWSKI Zachodiopomorski Uiwersytet Techologiczy W artykule przedstawioo elastyczo silików FIAT. Pierwszym aspektem

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szkoy dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajcego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo

Unifikacja elektro-s!aba

Unifikacja elektro-s!aba Unifikacja elektro-s!aba! Potrzeba unifikacji! Warunki unifikacji elektro-s!abej! Model Weinberga-Salama! Rezonans Z 0! Liczenie zapachów neutrin (oraz generacji) D. Kie!czewska, wyk!ad 7 1 Rozwa"my proces:

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/ Zadaie Niech a k >, (k =,, ) b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a )( + a ) ( + a ) + a + a + + a Czy zaªo»eie,»e

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/3 Zadaie Niech a k >, (k =,, b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a ( + a ( + a + a + a + + a Czy zaªo»eie,»e liczby

Bardziej szczegółowo

FAQ ANALIZA R c ZADANIA

FAQ ANALIZA R c ZADANIA FAQ ANALIZA R c ZADANIA Caªki wersja wst pa uwaga a bª dy!!! Fukcje pierwote Zadaie. Rozgrzewka. Obliczy caªki ieozaczoe, tz zale¹ fukcje pierwote. W awiasach wymieioe s arz dzia jakie mog by potrzebe

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Unimodalne odwzorowania kwadratowe

Unimodalne odwzorowania kwadratowe Dynamika Ukadów Nieliniowych 2009 Wykład 3 1 Unimodalne odwzorowania kwadratowe Najbardziej znane s dwa odwzorowania: - kwadratowe x n+1 = 1 - a x n 2 lub równowanie x n+1 = C - x n 2 - logistyczne x n+1

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

spr óyny nieliniowej, której spr óystoñƒ maleje dla wi kszych drga½ x.

spr óyny nieliniowej, której spr óystoñƒ maleje dla wi kszych drga½ x. Fizyka Ogólna Wyk»ad IV 1 Drgania nieliniowe Dotychczas rozpatrzyliśmy ruch drgający w układach, w których działa siła spręŝysta Działanie tej siły na cząstkę masywną prowadzi do ruchu harmonicznego: o

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 23, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 23, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elemetami fizyki współczesej wykład 23, 21.05.2012 wykład: pokazy: ćwiczeia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Erest Groder Wykład 22 - przypomieie ieliiowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

Dynamika Uk adów Nieliniowych 2009 Wykład 11 1 Synchronizacja uk adów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda.

Dynamika Uk adów Nieliniowych 2009 Wykład 11 1 Synchronizacja uk adów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda. Dynamika Ukadów Nieliniowych 2009 Wykład 11 1 Synchronizacja ukadów chaotycznych O synchronizacji mówiliśmy przy okazji języków Arnolda. Wtedy była to synchronizacja stanów periodycznych. Wiecej na ten

Bardziej szczegółowo

Ę ĘŃ ć Ą Ś ć ć ć ć ć ć Ń Ł ć Ń Ą ć ć Ę ć Ń ć Ń ć ź Ę Ń ć Ę ć ć ć ć ź ć ć ć ć ć ĄĄ Ę Ą ź ć Ą ć ć ź ź Ń Ą Ą Ę Ę Ę ć źć Ń Ą Ń ć Ł ź ź ć ć Ł ć Ę ć Ń Ń ź Ę ź ć Ę Ś Ń ć Ą Ń Ń Ń Ą Ą ź Ą Ę Ł ć Ń Ń ć ź Ń Ą Ę Ę

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n) ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,... Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Rozwiązanie równania oscylatora harmonicznego

Rozwiązanie równania oscylatora harmonicznego 3 FOTON 1, Wiosa 13 Rozwiązaie rówaia oscylatora harmoiczego Adrzej Odrzywołek Istytut Fizyki UJ 1 Wstęp Motywacją do zebraia różych sposobów rozwiązaia rówaia oscylatora harmoiczego: d x() t m k x() t

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. Zdajcy

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby.

Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby. Pojcie estymacji Metody probabilistycze i statystyka Wykład 9: Estymacja puktowa. Własoci estymatorów. Rozkłady statystyk z próby. Szacowaie wartoci parametrów lub rozkładu zmieej losowej w populacji geeralej

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Krystalografia Wykład IX

Krystalografia Wykład IX Krystalograia Wykład IX Pla wykładu NatęŜ ęŝeie retgeowskich releksów dyrakcyjych Atomowy czyik rozpraszaia Źródłem spójego promieiowaia rozproszoego sąs elektroy w atomach. Zatem liczba elektroów w w

Bardziej szczegółowo

15. CAŁKA NIEOZNACZONA cz. I

15. CAŁKA NIEOZNACZONA cz. I 5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Notatki do wykªadu Rachunek prawdopodobie«stwa dla informatyków.

Notatki do wykªadu Rachunek prawdopodobie«stwa dla informatyków. Notatki do wykªadu Rachuek prawdopodobie«stwa dla iformatyków. Marci Milewski Wrocªaw, 4 lutego 2009 Spis tre±ci 1 Prawdopodobie«stwo 2 1.1 Ozaczeia i poj cia...........................................

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

Cia!a sta!e. W!asno"ci elektryczne cia! sta!ych. Inne w!asno"ci

Cia!a sta!e. W!asnoci elektryczne cia! sta!ych. Inne w!asnoci Cia!a sta!e Podstawowe w!asno"ci cia! sta!ych Struktura cia! sta!ych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencja! kontaktowy

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo