Wstęp do Optyki i Fizyki Materii Skondensowanej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do Optyki i Fizyki Materii Skondensowanej"

Transkrypt

1 -3-9 Wstęp do Optyki i Fizyki Mateii Skondensowanej Wstęp do Optyki i Fizyki Mateii Skondensowanej Poponowane podęczniki: P. W. Atkins, Chemia fizyczna, Wydawnictwa Naukowe PWN, Waszawa. R. Bacewicz, Optyka ciała stałego, Oficyna Wydawnicza Politechniki Waszawskiej, Waszawa 995. W. Demtöde, Spektoskopia laseowa, Wydawnictwa Naukowe PWN, Waszawa 993. H. A. Enge, M. R. Weh, J. A. Richads, Wstęp do fizyki atomowej, Państwowe Wydawnictwo Naukowe, Waszawa 983. J. Ginte, Wstęp do fizyki atomu, cząsteczki i ciała stałego, Państwowe Wydawnictwo Naukowe, Waszawa 979. Gołębiewski, elementy mechaniki i chemii kwantowej, Państwowe Wydawnictwo Naukowe, Waszawa 98. H. Haken, H. C. Wolf, Fizyka molekulana z elementami chemii kwantowej, Wydawnictwa Naukowe PWN, Waszawa 998. H. Haken, H. C. Wolf, Atomy i kwanty, Wydawnictwa Naukowe PWN, Waszawa 997. Hennel, W. Szuszkiewicz, Zadania z fizyki atomu, cząsteczki i ciała stałego, Państwowe Wydawnictwo Naukowe, Waszawa 985. H. Ibach, M. Lüthi, Fizyka Ciała Stałego, Wydawnictwa Naukowe PWN, Waszawa 996. F. Kaczmaek, Wstęp do fizyki laseów, Państwowe Wydawnictwo Naukowe, Waszawa 986. C. Kittel, Wstęp do fizyki ciała stałego, Wydawnictwo Naukowe PWN, Waszawa 999. Kopystyńska, Wykłady z fizyki atomu. Państwowe Wydawnictwo Naukowe, Waszawa 989. P. Kowalczyk, Fizyka cząsteczek, Wydawnictwa Naukowe PWN, Waszawa. T. Stacewicz, A. Witowski, J. Ginte, Wstęp do optyki i fizyki ciała stałego, Wydawnictwa Uniwesytetu Waszawskiego, Waszawa. A. Twadowski, Wstęp do fizyki atomu, cząsteczki i ciała stałego, Wydawnictwa Uniwesytetu Waszawskiego, Waszawa. G. K. Woodgate, Stuktua atomu, Państwowe Wydawnictwo Naukowe, Waszawa 974. Uniwesytet Waszawski GyPlan GyPlan Oddziaływanie fali e-m z mateią Atomy (ze spinem), pzejścia optyczne Popagacja fali e-m pzez ośodki ½ Molekuły i cząsteczki, pzejścia optyczne + Oddziaływanie fali e-m z mateią Atomy (ze spinem), pzejścia optyczne Popagacja fali e-m pzez ośodki ½ Molekuły i cząsteczki, pzejścia optyczne + Mateia skondensowana Mateia skondensowana Ciało stałe, stuktua pasmowa, pzejścia optyczne 4 Ciało stałe, stuktua pasmowa, pzejścia optyczne 4 GyPlan Oddziaływanie fali e-m z mateią Atomy (ze spinem), pzejścia optyczne Popagacja fali e-m pzez ośodki ½ Optyka -powtózenie Molekuły i cząsteczki, pzejścia optyczne + Mateia skondensowana Ciało stałe, stuktua pasmowa, pzejścia optyczne 4 Popagacja fali elektomagnetycznej. Natężenie fali. Oddziaływanie fali e-m z ośodkiem, Odbicie plazmowe, klasyczny współczynnik załamania, kształt linii widmowych, poszezenia.

2 -3-9 Optyka -powtózenie Równania Mawella: ε divε ρ Β otε Ε otβ µ ε + divβ µ j Równanie falowe: Optyka -powtózenie ( otβ) Ε ot( otε) µ ε µ j Ε Ε µ ε Β Β µ ε c µ ε Równanie falowe: Optyka -powtózenie Natężenie fali czyli moc pzenoszona na jednostkę powiezchni wyaża się pzez wekto Poytinga[W/m ]: S µ DC Powe flow in a concentic cable Independent E and B fields Ε Β Optyka -powtózenie Fala elektomagnetyczna w póżni Równania Mawella: B E ote E B otb ε µ Równania falowe: E E µ ε Β Β µ ε Pędkość fali elektomagnetycznej: c 8 m c 3 µ ε s Współczynnik załamania: n ω k c Fala elektomagnetyczna w dielektyku Równania Mawella: B E ote E B otb ε µ µε Równania falowe: E E µ ε µε Β Β µ ε µε Pędkość fali elektomagnetycznej: c υ µ ε µε n Współczynnik załamania: n c υ µε nω k c Optyka -powtózenie Fala elektomagnetyczna w póżni Fala elektomagnetyczna w dielektyku Równania Mawella: B E ote E B otb ε µ Równania falowe: E E µ ε Β Β µ ε Pędkość fali elektomagnetycznej: c 8 m c 3 µ ε s Współczynnik załamania: n ω k c Równania Mawella: B E ote E B otb ε µ µε Równania falowe: E E µ ε µε Β Β µ ε µε Pędkość fali elektomagnetycznej: c υ µ ε µε n Ale w jaki sposób ośodek oddziałuje z falą elektomagnetyczną? Czy ε(a więc n) jest stałe? Współczynnik załamania: n c υ µε nω k c

3 -3-9 Wojtek Wasilewski Wojtek Wasilewski Wojtek Wasilewski Wojtek Wasilewski Wojtek Wasilewski Zjawisko Mossbauea Eplain it! The most impotant thing is, that you ae able to eplain it! You will have eams, thee you have to eplain it. Eventually, you pass them, you get you diploma and you think, that's it! No, the whole life is an eam, you'll have to wite applications, you'll have to discuss with pees... So lean to eplain it! You can tain this by eplaining to anothe student, a colleague. If they ae not available, eplain it to you mothe o to you cat! Rudolf Ludwig Mössbaue u. 99 Za Wikipedią 3

4 -3-9 Fala w ośodku wypełnionym oscylatoami (model Loentza): Dielektyk: Fala w ośodku wypełnionym oscylatoami (model Loentza): Dielektyk: E E P polayzacja ośodka D ε E + P -q +q p q moment dipolowy atomu (cząsteczki) Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. -q +q p q moment dipolowy atomu (cząsteczki) polayzacja ośodka P N p N( α E) ε χ E polayzowalność ε podatność dielektyczna Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. -q +q stąd D P ( + χ ) E ε ε E E + P ε ε ( t) N p( t) Nq( t) χ E( t) ε Tego szukamy: n ε + χ ( t) Musimy wyznaczyć! Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. d d q Ee + γ + ω dt dt m tłumienie siła spężysta iωt siła wymuszająca Rozwiązanie dla stanu ustalonego: iω t e Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozwiązanie dla stanu ustalonego: Podstawiamy: ep( iω ) t ( + i + ω γω ω ) Amplituda: qe m qe m ω ω + iγω ( ) 4

5 -3-9 Fala w ośodku wypełnionym oscylatoami (model Loentza): Fala w ośodku wypełnionym oscylatoami (model Loentza): Dostajemy: n Nq ε ε L + ε L + ε E ε m Nq. n n' iκ ε L Dla jednej częstości oscylatoa ω ε L, ale dla wielu jest to w pzybliżeniu stała suma wkładów od pozostałych. ( ω ω + iγ Nq κ m γω + ε ( ω ω ) γ ω Nq ω ω n' ε L + ε m ( ω ω ) + γ ω E E ep[ i( ω t knz) ] E ep[ i( ωt kn' z + ikκz) ] π E ep κ z ep i ω t λ [ ( kn' z) ] Dostajemy: a) b) związki dyspesyjne Kamesa- Koniga. Obsza dyspesji anomalnej Nq κ γω ε m ( ω ω ) + γ ω Nq n' + ω ω ε m ( ω ω ) + γ ω Fala w ośodku wypełnionym oscylatoami: Fala w ośodku wypełnionym oscylatoami: a) b) Część zeczywista opisuje zmianę wektoa falowego czynnika oscylującego fali elektomagnetycznej, - zeczywisty współczynnik załamania ośodka. Jeżeli pzez ośodek fala popaguje się bez absopcji, to nn. Część uojona współczynnika załamania κ chaakteyzuje absopcję ośodka. dn' Wielkość nazywana jest dyspesją ośodka. dω Pzykładwody:. Poza ezonansem jest ona funkcją dodatnią - dyspesja nomalna. Dla częstości bliskich częstości ezonansowej dyspesja ma znak ujemny - dyspesja anomalna. Fala w ośodku wypełnionym oscylatoami: Pawo Lambeta-Beea : Kilka ezonansów w ośodku: a). H O Pole elektyczne fali pzechodzącej pzez ośodek: π E E ep i( ωt kn' z + ikκz ) E ep κ z ep i ω t kn' z λ 4π Natężenie I E E o ep κ z λ [ ] [ ( )] b) I( z) I ep( αz) Współczynnik absopcji α κk 5

6 Fala w ośodku wypełnionym oscylatoami (model Loentza): d d qe iωt + γ + ω e dt dt m Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. Fala w ośodku wypełnionym oscylatoami (model Loentza): d d qe iωt + γ + ω e dt dt m siła wymuszająca Rozważamy siła tłumienie pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω hamoniczna i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. Rozwiązanie dla stanu ustalonego typu: e iωt Rozwiązanie dla stanu ustalonego typu: e iωt Fala w ośodku (óżnym): d d qe i + γ + ω e dt dt m d d + γ + ω dt dt d qe iωt + + e dt m ωt Model Loentza Widmo emisji Fala w plazmie Rozwiązanie dla stanu ustalonego typu: e iωt Np. kształt i szeokość linii emisyjnych Pzejście między dwoma poziomami układu kwantowego może być z dobym pzybliżeniem opisane za pomocą modelu oscylatoa hamonicznego: d d + γ + ω dt dt -q +q ( t) q( t) p Widmo emisji Tym azem atomy (cząsteczki) zostały (jakoś) pobudzone do dgań i staają się powócić do swojej ównowagi tacąc enegię na emisję pomieniowania elektomagnetycznego ( tłumienie ). P moment dipolowy atomu (cząsteczki) ( t) N p( t) Nq( t) χ E( t) ε Np. kształt i szeokość linii emisyjnych Analiza tego tłumienia oscylacji daje wgląd w mikoskopowe zjawiska zachodzące podczas (i w okolicach) emisji pomieniowania elektomagnetycznego! Chaakte zaniku pomieniowania w czasie ma wpływ na jego widmo(w domenie częstości). Np. kształt i szeokość linii emisyjnych Widmo - tansfomata Fouiea: Szeokość połówkowa linii: dgania tłumione (natualna szeokość linii) poszezenie ciśnieniowe poszezenie doppleowskie (pofil Voigta) χ -q +q Tym azem atomy (cząsteczki) zostały (jakoś) pobudzone do dgań i staają się powócić do swojej ównowagi tacąc enegię na emisję pomieniowania elektomagnetycznego ( tłumienie ). I( ω τ ω 6

7 -3-9 Np. kształt i szeokość linii emisyjnych Widmo - tansfomata Fouiea: Szeokość połówkowa linii: FWHM Full Width Half Maimum Np. kształt i szeokość linii emisyjnych Widmo - tansfomata Fouiea: Szeokość połówkowa linii: FWHM Full Width Half Maimum I( I ( ω ω ) + ( γ / ) I( I ( ω ω ) + ( γ / ) Np. popagacja fali w plazmie: d qe iωt + + e dt m j σ E swobodne ładunki zjonizowane gazy, (np. w lampach gazowych, w atmosfeach gwiazd i jonosfeach planet), plazma, plazma w ciele stałym -czyli gaz swobodnych nośników znajdujący się w metalach lub półpzewodnikach, ciecze - jak elektolity czy oztopione pzewodniki. Rozwiązanie dla stanu ustalonego: e iωt Np. popagacja fali w plazmie: d qe iωt + + e dt m j σ E swobodne ładunki zjonizowane gazy, (np. w lampach gazowych, w atmosfeach gwiazd i jonosfeach planet), plazma, plazma w ciele stałym -czyli gaz swobodnych nośników znajdujący się w metalach lub półpzewodnikach, ciecze - jak elektolity czy oztopione pzewodniki. Rozwiązanie dla stanu ustalonego: e iωt Kształt linii absopcyjnej Pawo Lambeta-Beea: I ( z, I( ep α( z [ ] gdzie absobancja α( κ ( k( a współczynnik absopcji (w pzypadku kształtu loencowskiego): Nq γω κ ( ε m ( ω ω ) + γ ω Gdy jesteśmy blisko ezonansu, gdy, współczynnik absopcji upaszcza się do postaci opisywanej kształtem Loenza. χ Efekt Dopplea Relatywistyczny efekt Dopplea (dla światła): υ > gdy źódło się zbliża. + υ / c ν obsew. νźódła νźódła + υ / c ( υ / c) Nq γ κ ( 8ε mω ( ω + ( γ / ) I( ω ω Pof. T. Stacewicz Pof. T. Stacewicz 7

8 -3-9 Efekt Dopplea Wizja atysty pzedstawia planety obitujące wokół PSR 57+ Wikipedia Efekt Dopplea Wolszczan, A., & Fail, D. A. A Planetay System aound the Millisecond Pulsa PSR , Natue, 355, 45. Aleksande Wolszczan Efekt Dopplea Masses and Obital Inclinations of Planets in the PSR B57+ System Maciej Konacki and Ale Wolszczan The Astophysical Jounal, 59:L47-L5, 3 July Efekt Dopplea Pzesunięcie ku czewieni linii spektalnych w zakesie światła widzialnego supegomady odległych galaktyk (po pawej) w poównaniu do Słońca (po lewej) Best-fit daily aveaged time-of-aivalesiduals fo theetiming models of PSRB57+ obseved at 43MHz. Wikipedia Kształt linii absopcyjnej Poszezenie doppleowskie Na skutek efektu Dopplea pouszający się obiekt absobuje lub pomieniuje falę o częstości pzesuniętej względem częstości własnej obiektu spoczywającego: ω A ω (+V Z /c) V Z jest składową pędkości wzdłuż kieunku ozchodzenia się pomieniowania W tempeatuze Tzależność między liczbą cząstek o masie ma pędkością V Z jest opisywana pzez ozkład Mawella : n i i ( VZ ) dvz ep V N π [ ( VZ VP ) ] dvz p Ten opis jest słuszny dla układu w ównowadze temodynamicznej. W pzypadku gdy ozkład pędkości nie jest temiczny (np. w wiązkach atomowych) należy zastosować inną funkcję, właściwą dla danego układu kt V P m Pof. T. Stacewicz 8

9 -3-9 Poszezenie doppleowskie Po podstawieniu popzedniego ównania otzymujemy ozkład liczby cząstek pomieniujących z daną częstością ω: N ic / ω [ ( c/ V ] ni ( ) d e P )( ω ω ')/ ω ω ω dω V p π Ponieważ natężenie pomieniowania jest popocjonalne do ilości pomieniujących cząstek, mamy gaussowski kształt linii spektalnej. Po unomowaniu powyższej funkcji : c( ω ω I ( ω ) I ep ω V P Szeokość linii doppleowskiej wynosi Poszezenie doppleowskie W gazach atomowych i molekulanych: natualne szeokości linii wynoszą od kilku do kilkunastu megaheców, na skutek uchów cieplnych cząstek linie te ulegają poszezeniu kilkadziesiąt do kilkuset azy. δω D V P ω ln ω c c 8kT ln m Pof. T. Stacewicz ω Pof. T. Stacewicz Poszezenie doppleowskie Kształt linidoppleowskejjest gaussowski tylko pzy założeniu, że natualna szeokość linii jest badzo mała (ściślej, że jest detlą Diaca). Jeśli weźmiemy pod uwagę szeokość natualną linii widmowej (np. w badzo chłodnych gazach) otzymamy pofil Voigta. Pofil Voigta Rozważmy układ oscylatoów tłumionych. każdy z nich chaakteyzuje się widmem Loentza, któego szeokość nie może być zaniedbana. na skutek uchu cieplnego i efektu Dopplea częstość centalna ω każdego oscylatoa ulega pzesunięciu do watości ω i. Wypadkowe natężenie pomieniowania jest sumą natężeń pochodzących od poszczególnych oscylatoów: I( I i ( ω ω ) + ( γ / ) i i któa w pzypadku ciągłego, mawellowskiego ozkładu pędkości pzechodzi w całkę, dając splot funkcji Gaussa i Loentza [ ( c / V )( ω ω ') / ω ] e P I( C dω' ( ω ω') + ( γ / ) γnic C 3 V π ω P Pof. T. Stacewicz Pofil Voigta Zjawisko Mossbauea "fo his eseaches concening the esonance absoption of gamma adiation and his discovey in this connection of the effect which beas his name" Rudolf Ludwig Mössbaue u. 99 Pof. T. Stacewicz 9

10 -3-9 Zjawisko Mossbauea Zjawisko Mossbauea Eplain it! The most impotant thing is, that you ae able to eplain it! You will have eams, thee you have to eplain it. Eventually, you pass them, you get you diploma and you think, that's it! No, the whole life is an eam, you'll have to wite applications, you'll have to discuss with pees... So lean to eplain it! You can tain this by eplaining to anothe student, a colleague. If they ae not available, eplain it to you mothe o to you cat! Za Wikipedią Rudolf Ludwig Mössbaue u. 99 Jądo (a więc cały atom) emitując fotony o enegii E doznaje pewnego odzutu. Jego enegię można wyznaczyć z pawa zachowania pędu: odzut atomu masa atomu E R E γ pc p Eγ M Mc Zgodnie z zasadą zachowania enegii emitowany foton ma enegię mniejszą o E R od enegii wzbudzenia jąda E, gdyż ta część enegii zostaje zużyta na odzut. Z kolei w takcie absopcji jądo pochłania foton, czego skutkiem jest ównież odzut. Wynika stąd, iż niedopasowanie enegetyczne między fotonami emitowanymi a absobowanymi wynosi E R Zjawisko Mossbauea Zjawisko Mossbauea intensywność linia emisyjna E - E R E linia absopcyjna E + E R Rudolf Ludwig Mössbaue u. 99 To pzejście jest odpowiednio wąskie (czyli długożyciowe) E R E 4,4 kev τ 7 s h 8 Γ ev τ Γ E p Eγ M Mc,eV ALE: w pzypadku kyształu pęd pzejmuje CAŁA sieć, więc można pzyjąć, że absopcja jest bezodzutowa Zjawisko Mossbauea Zjawisko Mossbauea Efekt Doplea: ν ν υ obsew. νźódła υ / c 6,67 Źódło 57 Co Absobent 57 Fe Detekto γ υ Efekt Doplea: mm/s! ν ν ν υ obsew. źódła / c 6,67 Źódło 57 Co Absobent 57 Fe Detekto γ υ υ

11 -3-9 Zjawisko Mossbauea Spitit i Oppotunity Zjawisko Mossbauea Spitit i Oppotunity Zjawisko Mossbauea Zjawisko Mossbauea Test Ogólnej Teoii Względności Havad Towe Epeiment Rozszczepienie poziomów enegetycznych jąda 57 Fe na skutek efektu Zeemana. OTW Zjawisko Mossbauea E E mgh gh c E E down down E E E E up up gh Pzesunięcie ku czewieni spowodowane polem gawitacyjnym ν obsew. νźódła + Ziemi (Ogólna Teoia Względności) c 5 ν / ν 4,9 E E Zysk enegii spadającego fotonu,4kev g,6m 3,5 ev c 4 ( 3,5 ev) 5 4,4keV 5 ( 5, ±,5) 4,9 Wynik pomiau Zjawisko Mossbauea Robet Pound, stationed at the top of a towe in a Havad physics building (top), communicated by phone with Glen Rebkain the basement duing calibations fo thei epeiment. The team veified Einstein's pediction that gavity can change light's fequency. 96

12 -3-9 Zjawisko Mossbauea Test Ogólnej Teoii Względności Havad Towe Epeiment Nanotechnologie i stuktuy niskowymiaowe OTW Półpzewodniki Nanotechnologia w kultuze Nanotechnologia na co dzień Studnie, duty, kopki kwantowe Top-down Bottom-up bio/med nano Zagożenia

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Karta wybranych wzorów i stałych fizycznych

Karta wybranych wzorów i stałych fizycznych Kata wybanych wzoów i stałych fizycznych Mateiały pomocnicze opacowane dla potzeb egzaminu matualnego i dopuszczone jako pomoce egzaminacyjne. publikacja współfinansowana pzez Euopejski Fundusz Społeczny

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Wzbudzenia sieci fonony

Wzbudzenia sieci fonony Wzbudzenia sieci fonony pzybliżenie adiabatyczne elastomechaniczny model kyształu, poęcie fononu, Dynamiczna Funkca Dielektyczna w opisie wzbudzeń sieci wzbudzenia podłużne i popzeczne w ównaniach Maxwella

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej

POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej PITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petochemii Instytut Inżynieii Mechanicznej w Płocku Zakład Apaatuy Pzemysłowej ABRATRIUM TERMDYNAMIKI Instukcja stanowiskowa Temat: Analiza spalin

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU

CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU Jezy PIETRZYKOWSKI CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU STRESZCZENIE Okeślono haakteystyki użytkowe szeokopasmowyh mieników nadfioletu oaz ih klasyfikaję. Podano

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektyczność i Magnetyzm Wykład: Piot Kossacki Pokazy: Paweł Tautman, Aleksande Bogucki Wykład dwudziesty tzeci 26 maja 215 Z popzedniego wykładu Płytka dielektyka w polu (ównowaga, dgania) Mikoskopowe

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: inżynieria środowiska Rodzaj przedmiotu: nauk ścisłych, moduł 1 Rodzaj zajęć: Wykład, ćwiczenia Profil kształcenia: ogólnoakademicki Fizyka Physics Poziom kształcenia: I stopnia

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Wykład 15 Rozpraszanie światła Ramana i luminescencja

Wykład 15 Rozpraszanie światła Ramana i luminescencja Wykład 5 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

Plan realizacji materiału z fizyki.

Plan realizacji materiału z fizyki. Plan realizacji materiału z fizyki. Ze względu na małą ilość godzin jaką mamy do dyspozycji w całym cyklu nauczania fizyki pojawił się problem odpowiedniego doboru podręczników oraz podziału programu na

Bardziej szczegółowo

Ą ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Bardziej szczegółowo

Kryteria oceniania z fizyki. Nowa podstawa programowa nauczania fizyki i astronomii w gimnazjum. Moduł I, klasa I. 1.Ocenę dopuszczającą otrzymuje

Kryteria oceniania z fizyki. Nowa podstawa programowa nauczania fizyki i astronomii w gimnazjum. Moduł I, klasa I. 1.Ocenę dopuszczającą otrzymuje Kryteria oceniania z fizyki. Moduł I, klasa I. - zna pojęcia: substancja, ekologia, wzajemność oddziaływań, siła. - zna cechy wielkości siły, jednostki siły. - wie, jaki przyrząd służy do pomiaru siły.

Bardziej szczegółowo

Galaktyki aktywne I. (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN)

Galaktyki aktywne I. (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN) Galaktyki aktywne I (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN) System klasyfikacji Hubble a (1936) Galaktyki normalne / zwyczajne -różnoraka morfologia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia. Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada

Bardziej szczegółowo

III.3 Emisja wymuszona. Lasery

III.3 Emisja wymuszona. Lasery III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH Impulsowe lasery na ciele stałym są najbardziej ważnymi i szeroko rozpowszechnionymi systemami laserowymi. Np laser Nd:YAG jest najczęściej stosowany do znakowania,

Bardziej szczegółowo

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Zjawisko Dopplera w fizyce jądrowej. 3.1 Wstęp. (opracowany na podstawie podręcznika Mayera-Kuckuka [8])

Zjawisko Dopplera w fizyce jądrowej. 3.1 Wstęp. (opracowany na podstawie podręcznika Mayera-Kuckuka [8]) Zjawisko Dopplera w fizyce jądrowej 3.1 Wstęp (opracowany na podstawie podręcznika Mayera-Kuckuka [8]) W fizyce jądrowej, badanie stanów wzbudzonych i przejść między nimi stanowi klucz do zrozumienia skomplikowanej

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego FIZYKA. Repetytorium Część 1 ZAJĘCIA WYRÓWNAWCZE

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego FIZYKA. Repetytorium Część 1 ZAJĘCIA WYRÓWNAWCZE Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego FIZYKA Repetytoium Część 1 ZAJĘCIA WYRÓWNAWCZE D Jezy Stasz Dąbowa Gónicza 2013 Spis teści 1. Mechanika... 4 1.1 Skalay,

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa

Bardziej szczegółowo

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi: Stechiometria Każdą reakcję chemiczną można zapisać równaniem, które jest jakościową i ilościową charakterystyką tej reakcji. Określa ono bowiem, jakie pierwiastki lub związki biorą udział w danej reakcji

Bardziej szczegółowo

PodwyŜszenie właściwości eksploatacyjnych systemów tribologicznych

PodwyŜszenie właściwości eksploatacyjnych systemów tribologicznych KOSMYNINA Miosława BUKALSKA Eugenia 1 MICHALAK Paweł RYBA Tomasz PodwyŜszenie właściwości eksploatacyjnych systemów tibologicznych WSTĘP W uządzeniach mechanicznych funkcje eksploatacyjne spełniają zespoły

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Soczewkowanie grawitacyjne

Soczewkowanie grawitacyjne Soczewkowanie grawitacyjne Obserwatorium Astronomiczne UW Plan Ugięcie światła - trochę historii Co to jest soczewkowanie Punktowa masa Soczewkowanie galaktyk... kwazarów... kosmologiczne Mikrosoczewkowanie

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...

Bardziej szczegółowo

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym.

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym. Rozkład materiału nauczania z fizyki. Numer programu: Gm Nr 2/07/2009 Gimnazjum klasa 1.! godzina fizyki w tygodniu. 36 godzin w ciągu roku. Klasa 1 Podręcznik: To jest fizyka. Autor: Marcin Braun, Weronika

Bardziej szczegółowo

Efekt cieplarniany i warstwa ozonowa

Efekt cieplarniany i warstwa ozonowa Efekt cieplarniany i warstwa ozonowa Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało pochłaniające całkowicie każde promieniowanie, które padnie na jego powierzchnię, niezależnie od

Bardziej szczegółowo

Ćwiczenia z radiochemii 2

Ćwiczenia z radiochemii 2 Ćwiczenia z adiochemii 2 Geneato 99 Mo/ 99m Tc. Okeślenie znaku i wielkości ładunku jonów technetu-99m wykozystywanych do otzymywania adiofamaceutyków 1. Wstęp Technet-99m jest adionuklidem najpowszechniej

Bardziej szczegółowo

Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)

Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy optyki fizycznej i instrumentalnej Nazwa w języku angielskim Fundamentals of Physical and Instrumental Optics Kierunek

Bardziej szczegółowo

RENTGENOWSKA ANALIZA FLUORESCENCYJNA

RENTGENOWSKA ANALIZA FLUORESCENCYJNA RENTGENOWSKA ANALIZA FLUORESCENCYJNA Cel ćwiczenia. Celem ćwiczenia jest zidentyfikowanie pierwiastków w próbkach metodą rentgenowskiej analizy fluorescencyjnej przy zastosowaniu zestawu firmy Amptek składającego

Bardziej szczegółowo

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM DRGANIA I FALE MECHANICZNE - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. -Wie, że fale sprężyste nie mogą rozchodzić się w

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Podstawy fizyki wykład 6

Podstawy fizyki wykład 6 Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLI OLIPIADA FIZYCZNA EAP I Zadanie doświadczalne ZADANIE D Pod działaniem sil zewnęznych ciała sale ulęgają odkszałceniom. Wyznacz zależność pomienia obszau syczniści szklanej soczewki z płyka szklana

Bardziej szczegółowo

KARTA PROGRAMOWA - Sylabus -

KARTA PROGRAMOWA - Sylabus - AKADEMIA TECHNICZNO HUMANISTYCZNA KARTA PROGRAMOWA - Sylabus - WYDZIAŁ BUDOWY MASZYN I INFORMATYKI Przedmiot: Fizyka Kod przedmiotu: ZDI_B_0_ Rok studiów: Semestr: Punkty ECTS: 4 Kierunek : Zarządzanie

Bardziej szczegółowo