O teleportacji i telepatii, czyli jak zostać wróżbitą w Polsce.

Wielkość: px
Rozpocząć pokaz od strony:

Download "O teleportacji i telepatii, czyli jak zostać wróżbitą w Polsce."

Transkrypt

1 O teleportacji i telepatii, czyli jak zostać wróżbitą w Polsce. Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN 25 kwietnia 2009 Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

2 Plan prelekcji Wstęp Plan prelekcji 1 Wstęp Plan prelekcji 2 Jak zostać wróżbitą w Polsce 3 Teleportacja Znany przykład 4 Za szybki wstęp do mechaniki kwantowej Postulaty mechaniki kwantowej O co chodzi z kotem? Jeszcze jeden cud kwantowy Splątanie 5 Teleportacja kwantowa 6 Telepatia 7 Telepatia kwantowa Gra w magiczne kwadraty Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

3 Jak zostać wróżbitą w Polsce Podstawa prawna Rozporządzenie Ministra Gospodarki i Pracy z dnia 8 grudnia 2004 r. w sprawie klasyfikacji zawodów i specjalności dla potrzeb rynku pracy oraz zakresu jej stosowania, Dziennik Ustaw 2004 nr 265 poz STRUKTURA KLASYFIKACJI ZAWODÓW I SPECJALNOŚCI 5 PRACOWNICY USŁUG OSOBISTYCH I SPRZEDAWCY 5149 Pracownicy usług osobistych gdzie indziej niesklasyfikowani Astrolog Radiesteta Wróżbita Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

4 Jak zostać wróżbitą w Polsce Zakres obowiązków Nazwa: Wróżbita Kod: Synteza: Świadomie wykorzystując wrodzone uzdolnienia do działania w obszarze zjawisk nadprzyrodzonych, dokonuje wglądu w przeszłe i przyszłe wydarzenia przy zastosowaniu ukształtowanych przez tradycję różnych form wróżenia, takich jak: karty (zwłaszcza tarot), kabała, I-cing (zgodnie ze starochińską Księgą przemian ), chiromancja (wróżenie z ręki), katoptromancja i krystalomancja (przepowiadanie przyszłości za pomocą zwierciadła lub kryształu) itp. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

5 Jak zostać wróżbitą w Polsce Zadania zawodowe: przepowiadanie przyszłości, czasem ujawnianie przeszłości zależnie od przyjętej metody i poziomu wiedzy wróżbity związane z konkretnym poradnictwem lub psychoterapią; udzielanie porad dotyczących zaginionych osób lub rzeczy; wyjaśnianie podłoża i uwarunkowań zjawisk określonych jako niezwykłe. Dodatkowe zadania zawodowe: wykorzystywanie zdolności jasnowidzenia, jasnosłyszenia, wspieranie wróżenia zjawiskami mediumicznymi, wykorzystywanie telepatii, teleportacji oraz czerpanie z informacji zawartych w polach morfogenetycznych; stosowanie metod właściwych astrologii, numerologii, psychografologii lub innym biotronicznym dziedzinom. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

6 Teleportacja Teleportacja Z gr. tele- daleki, łac. portare przenosić. Termin wprowadzony przez amerykańskiego pisarza Charlsa Forta w książce Lo! z 1931 r a. Termin ten oznacza przeniesienie materii na pewną odległość poprzez jej dekonstrukcje oraz zapisanie jej stanu, przesłanie tego stanu do innego miejsca i następnie rekonstrukcję. a Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

7 Znany przykład Teleportacja Znany przykład Rysunek: Transporter ze Star Treka, czyli Beam me up Scotty! 1 Żródło: 1 Ponoć powodem do użycia teleportacji w filmie była chęć uniknięcia kręcenia kosztownych scen lądowania i startu na i z planet. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

8 Teleportacja Znany przykład A teraz będzie ciężko! Przechodzimy do nauki. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

9 Za szybki wstęp do mechaniki kwantowej Postulaty mechaniki kwantowej Postulaty mechaniki kwantowej zamachane rękami Stan Stan układu jest opisany pewnym wektorem zespolonym. Obserwable Każdej mierzalnej wielkości fizycznej odpowiada pewna macierz hermitowska. Wyniki pomiarów Jedyne dopuszczalne wyniki pomiarów to wartości własne danej obserwabli. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

10 Za szybki wstęp do mechaniki kwantowej Postulaty mechaniki kwantowej Postulaty mechaniki kwantowej zamachane rękami c.d. Prawdopodobieństwo Prawdopodobieństwo zmierzenia danej wartości własnej jest równe kwadratowi modułu iloczynu skalarnego odpowiedniego wektora własnego i wektora stanu. Pomiar Jeżeli w układzie kwantowym dokonamy pomiaru, to układ ten przejdzie w stan odpowiadający zmierzonej wartości własnej. Pomiar Ewolucja układu kwantowego jest opisana macierzą unitarną (w przypadku dyskretnym) lub równaniem Shrödingera (w przypadku ciągłym). Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

11 Za szybki wstęp do mechaniki kwantowej Postulaty mechaniki kwantowej Nic z tego nie rozumiem! Co mam zrobić? Spróbować zrozumieć co następuje... Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

12 Za szybki wstęp do mechaniki kwantowej Postulaty mechaniki kwantowej Mechanika kwantowa dla opornych w minutę robiąc z rąk wiatrak ;) Świat mechaniki kwantowej jest dziwny i nieintuicyjny. Układy kwantowo mechaniczne są dla nas ukryte. Mamy do nich dostęp tylko przez pomiar. Możemy mierzyć ich pewne wartości fizyczne, ale nie możemy dowiedzieć się o nich wszystkiego. W szczególności nie możemy poznać dokładnie położenia i prędkości cząstki. Wynik pomiaru zawsze jest losowy. Pomiar zmienia mierzony stan. Ewolucja (zmiana w czasie) układu jest deterministyczna (całkowicie odwracalna)! Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

13 Za szybki wstęp do mechaniki kwantowej O co chodzi z kotem? Naturalne pytanie: A o co chodzi z tym kotem? Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

14 Za szybki wstęp do mechaniki kwantowej Interferometr Macha-Zedera Jeszcze jeden cud kwantowy Rysunek: Interferometr Macha-Zendhera Źródło: Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

15 Za szybki wstęp do mechaniki kwantowej Splątanie Splątanie Splątanie to taka własność układów kwantowych że: układy kwantowe mogą być skorelowane (powiązane) ze sobą nawet jeżeli dzieli ich dowolnie duża odległość. Zmiana jednego układu wpływa na zmianę drugiego układu. ψ = 1 2 ( ) (1) Stan Bela Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

16 Teleportacja kwantowa Teleportacja kwantowa Teleportacja kwantowa Teleportacja kwantowa, to protokół przesłania stanu kwantowego z wykorzystaniem pary splątanych cząstek oraz komunikacji klasycznej. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

17 Teleportacja kwantowa Teleportacja kwantowa teoria q 0 H q 1 H q 2 X Z Rysunek: Obwód teleportacji kwantowej Źródło: Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

18 Teleportacja kwantowa Teleportacja kwantowa rzeczywistość Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

19 Teleportacja kwantowa Teleportacja kwantowa eksperymenty 1993 Propozycja protokołu teleportacji Eksperymentalna realizacja z wykorzystaniem fotonów Teleportacja wykonana przy użyciu światłowodu na odległość 2 Km Teleportacja na 600 m przy użyciu światłowodu pod Dunajem. 5 2 C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 70, (1993) 3 D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental Quantum Teleportation, Nature 390, 6660, (1997). 4 I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Long-Distance Teleportation of Qubits at Telecommunication Wavelengths, Nature, 421, R. Ursin et.al., Quantum Teleportation Link across the Danube, Nature 430, 849 (2004) Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

20 Teleportacja kwantowa Teleportacja kwantowa eksperymenty 2004 Telportacja pomiędzy jonami berylu Teleportacja pomiędzy jonami wapnia na odległość 1µm Teleportacja kwantowa pomiędzy atomami oddalonymi o 1 m od siebie. 8 6 M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D. J. Wineland, Deterministic Quantum Teleportation of Atomic Qubits, Nature 429, 737 (2004). 7 M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, M. Ruth, J. Benhelm, G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt, Deterministic Quantum Teleportation with Atoms, Nature 429, (2004). 8 S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, Quantum Teleportation between Distant Matter Qubits, Science 323, 486 (2009). Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

21 Różnica Teleportacja kwantowa Rysunek: Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

22 Telepatia Telepatia Definicja gr. tele odległy patheia uczucie. Forma percepcji pozazmysłowej, umiejętność emisji własnych myśli i odczuwania myśli innych osób. Załóżmy, że chcemy udowodnić niedowiarkowi, że umiemy posługiwać się telepatią. Jak to zrobić? Można np. wykonać taki eksperyment:... Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

23 Telepatia Telepatia eksperyment Mamy dwóch uczestników eksperymentu: Alicję i Boba, którzy chcą udowodnić Cecylii i Ewie, że umieją się posługiwać telepatią. Alicja ma talię kart. Bob nie widzi (nie ma żadnej możliwości kontaktu poza telepatią) ani Alicji, ani talii kart. Alicja ciągnie losowo kartę z talii i pokazuje ją Cecylii. Cecylia zapisuje jaka to karta była. Bob mówi Ewie jaką kartę pociągnęła Alicja. Ewa zapisuje tę informację. Procedura jest powtarzana wielokrotnie. Jeżeli zapisy Cecylii i Ewy się zgadzają, to znaczy, że Alicja i Bob wykorzystują telepatię. Nikomu się jeszcze nie udało. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

24 Telepatia kwantowa Trochę inna wersja tej zabawy Gra w magiczne kwadraty Gra w magiczne kwadraty. W grze bierze udział dwoje graczy: Alicja i Bob. Są oni odseparowani od siebie i podczas trwania rozgrywki nie mogą się komunikować. Jednakże przed rozgrywką mogą ustalić strategię. Celem graczy jest wypełnienie liczbami {0, 1} jednej kolumny i jednego wiersza kwadratu 3 na 3 według następujących zasad: w kolumnie suma liczb musi być parzysta, w wierszu suma liczb musi być nieparzysta. Alicja dostaje wylosowany numer kolumny, Bob dostaje wylosowany numer wiersza. Alicja wypełnia jedną kolumnę zgodnie z zasadami, Bob wypełnia jeden wiersz. Gra jest wygrana jeżeli na przecięciu zadanego wiersza i zadanej kolumny Alicja i Bob podali tą samą liczbę. W przeciwnym przypadku gra jest przegrana. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

25 Telepatia kwantowa Trochę inna wersja tej zabawy Gra w magiczne kwadraty /0 = 1 = 1 = 0/ /0 Istnieje klasyczna strategia, która daje Alicji i Bobowi szansę wygranej 8/9. Jeżeli Alicja i Bob mają możliwość współdzielenia stanu splątanego, to istnieje strategia wygrywająca. Zjawisko to nazywane jest pseudotelepatią gdyż, dla obserwatora nieznającego praw mechaniki kwantowej, Alicja i Bob przesyłają między sobą informacje chociaż fizycznie jest to niemożliwe. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

26 Telepatia kwantowa Gra w magiczne kwadraty Pseudo-telepatia kwantowa eksperymenty O ile mi wiadomo nie zostały wykonane żadne eksperymenty realizujące pseudo-telepatię kwantową. Takie eksperymenty byłyby bardzo pożądane, gdyż stanowiłyby prosty dowód na istnienie splątania. Niestety ich wykonanie jest na dzień dzisiejszy bardzo trudne. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

27 Podsumowanie Telepatia kwantowa Gra w magiczne kwadraty Wróżbitą w Polsce można zostać całkiem legalnie i można zajmować się teleportacją i telepatią wystarczy studiować lub badać fizykę, matematykę lub informatykę teoretyczną. Do czego zachęcam. Jeżeli niewiele zrozumieliście, to nie martwcie się, bo to na prawdę są trudne zagadnienia, ale... wszystko jest dla ludzi. Świat rzeczywisty jest na tyle dziwny, że fantastyka rzadko może go przebić. Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

28 Telepatia kwantowa Gra w magiczne kwadraty Dziękuję za uwagę. Pytania? Piotr Gawron (IITiS PAN) O teleportacji i telepatii kwietnia / 28

Splątanie a przesyłanie informacji

Splątanie a przesyłanie informacji Splątanie a przesyłanie informacji Jarosław A. Miszczak 21 marca 2003 roku Plan referatu Stany splątane Co to jest splątanie? Gęste kodowanie Teleportacja Przeprowadzone eksperymenty Możliwości wykorzystania

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI, Instytut Fizyki (wykład w j. angielskim) KARTA PRZEDMIOTU Nazwa w języku polskim Klasyczna i kwantowa kryptografia Nazwa w języku angielskim

Bardziej szczegółowo

Historia najważniejszych idei w fizyce

Historia najważniejszych idei w fizyce Historia najważniejszych idei w fizyce Wykład 1 WSTĘP Człowiek zajmujący się nauką nigdy nie zrozumie, dlaczego miałby wierzyć w pewne opinie tylko dlatego, że znajdują się one w jakiejś książce. (...)

Bardziej szczegółowo

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN Internet kwantowy (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN 16. stycznia 2012 Plan wystąpienia 1 Skąd się biorą stany kwantowe? Jak

Bardziej szczegółowo

High level programming in quantum computer science

High level programming in quantum computer science High level programming in quantum computer science Autor: Promotor: prof. dr hab. inż. Jerzy Klamka Instytut Informatyki Teoretycznej i Stosowanej PAN 23 grudnia 2008 Plan wystąpienia 1 Wstęp Motywacja

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Kwantowe przelewy bankowe foton na usługach biznesu

Kwantowe przelewy bankowe foton na usługach biznesu Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Fizyka dla wszystkich

Fizyka dla wszystkich Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1

Bardziej szczegółowo

Jego pitagorejska szkołą stała się kolebką, z której wywodzi się Numerologia współczesna.

Jego pitagorejska szkołą stała się kolebką, z której wywodzi się Numerologia współczesna. Naucz się wróżb numerologii Od wieków liczby fascynowały ludzi. Babilończycy, Hebrajczycy czy Fenicjanie wierzyli w wielką siłę. Pitagoras, grecki matematyk i astrolog żyjący około 580-500 roku p.n.e.

Bardziej szczegółowo

Krótki wstęp do mechaniki kwantowej

Krótki wstęp do mechaniki kwantowej Piotr Kowalczewski III rok fizyki, e-mail: piotrkowalczewski@gmailcom Krótki wstęp do mechaniki kwantowej Spotkanie Sekcji Informatyki Kwantowej Mechanika kwantowa w cytatach If quantum mechanics hasn

Bardziej szczegółowo

Runda 5: zmiana planszy: < < i 6 rzutów.

Runda 5: zmiana planszy: < < i 6 rzutów. 1. Gry dotyczące systemu dziesiętnego Pomoce: kostka dziesięciościenna i/albo karty z cyframi. KaŜdy rywalizuje z kaŝdym. KaŜdy gracz rysuje planszę: Prowadzący rzuca dziesięciościenną kostką albo losuje

Bardziej szczegółowo

Wstęp do algorytmiki kwantowej

Wstęp do algorytmiki kwantowej Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Cześć Druga

1. Matematyka Fizyki Kwantowej: Cześć Druga . Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Czy umiemy mnożyć wektory?

Czy umiemy mnożyć wektory? Czy umiemy mnożyć wektory? wprowadzenie do algebry geometrycznej Jacek Grela 1 UJ 2010 Plan działania Motywacja Wprowadzenie do algebry geometrycznej Algebra 2D, 3D Przykład fizyczny Algebra czasoprzestrzeni

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Karta pracy do doświadczeń

Karta pracy do doświadczeń Karta pracy do doświadczeń (Karta pracy do eksperymentów, obserwacji oraz zajęć z pytaniem problemowym.) Pola zielone - wypełnia tworzący Kartę. Pola niebieski wypełniają uczniowie uczestniczący w zajęciach.

Bardziej szczegółowo

Język programowania komputerów kwantowych oparty o model macierzy gęstości

Język programowania komputerów kwantowych oparty o model macierzy gęstości oparty o model macierzy gęstości (Promotorski) Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN 13 grudnia 2008 Plan wystąpienia Wstęp Motywacja Teza pracy Model obliczeń kwantowych Operacje

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Numer zadania Liczba punktów

Numer zadania Liczba punktów Kod ucznia Łączna liczba punktów Numer zadania 1 13 14 16 17 18 19 20 Liczba punktów Drogi Uczniu! Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 45 punktów. Aby mieć

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna Cząstka w pudle potencjału Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna 1 Plan prezentacji Czym jest cząstka w pudle potencjału? Czym się różni od piłki w pudle kartonowym? Teoria jednowymiarowego

Bardziej szczegółowo

Internet of Things. Jacek Cichoń Mirosław Kutyłowski. 1 października 2015. wyzwania i zagrożenia

Internet of Things. Jacek Cichoń Mirosław Kutyłowski. 1 października 2015. wyzwania i zagrożenia Internet of Things wyzwania i zagrożenia Jacek Cichoń Mirosław Kutyłowski 1 października 2015 Jacek Cichoń Internet of Things 1 października 2015 1 / 18 Dzisiejszy internet Graf połaczeń Azja Pacyficzna

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Prezentacja liczb trójkątnych i kwadratowych

Scenariusz lekcji Ozobot w klasie: Prezentacja liczb trójkątnych i kwadratowych Scenariusz lekcji Ozobot w klasie: Prezentacja liczb trójkątnych i kwadratowych Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Matematyka, Informatyka,

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. V.

Scenariusz lekcji matematyki w kl. V. Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości ułamki zwykłe, dodawanie i odejmowanie ułamków. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie

Bardziej szczegółowo

Programowanie 3 - Funkcje, pliki i klasy

Programowanie 3 - Funkcje, pliki i klasy Instytut Informatyki Uniwersytetu Śląskiego Laborki funkcja; parametry funkcji; typ zwracany; typ void; funkcje bez parametrów; napis.length() - jako przykład funkcji. Zadania funkcja dodająca dwie liczby;

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

O spl ataniu kwantowym s lów kilka

O spl ataniu kwantowym s lów kilka O spl ataniu kwantowym s lów kilka Krzysztof Byczuk Instytut Fizyki Teoretycznej, Uniwersytet Warszawski http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html 30 styczeń 2006 Rozważania Einsteina,

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka)

Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka) Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Metody fizyki w ekonomii (ekonofizyka) 1. CHARAKTERYSTYKA STUDIÓW Celem kształcenia w ramach specjalności Metody fizyki w ekonomii

Bardziej szczegółowo

CO DWIE GŁOWY TO NIE JEDNA

CO DWIE GŁOWY TO NIE JEDNA II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 1. Organizatorem konkursu jest Zespół Szkół nr 4 w Kościanie, nauczyciele Jolanta Niklas, Jolanta Jąder,

Bardziej szczegółowo

REGULAMIN KONKURSU MATEMATYCZNEGO O NAGDODĘ DYREKTORA III LICEUM OGÓLNOKSZTAŁCĄCEGO W ZAMOŚCIU DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/14

REGULAMIN KONKURSU MATEMATYCZNEGO O NAGDODĘ DYREKTORA III LICEUM OGÓLNOKSZTAŁCĄCEGO W ZAMOŚCIU DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/14 REGULAMIN KONKURSU MATEMATYCZNEGO O NAGDODĘ DYREKTORA III LICEUM OGÓLNOKSZTAŁCĄCEGO W ZAMOŚCIU DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/14 I II Organizator konkursu. III Liceum Ogólnokształcące w Zamościu.

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Dziennik laboratoryjny.

Dziennik laboratoryjny. Dziennik laboratoryjny. Zespół. Kto jest w naszym zespole i jakie ma zainteresowania? Tę część Dziennika wypełniacie podczas tworzenia zespołu. Podajcie swoje imiona i jeśli chcecie, napiszcie kilka słów

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

1. Po kliknięciu we wspomniany link otworzy się strona o następującym wyglądzie:

1. Po kliknięciu we wspomniany link otworzy się strona o następującym wyglądzie: Jak złożyć wniosek w Programie Równać Szanse 2015 Ogólnopolski Konkurs Grantowy instrukcja postępowania z elektronicznym systemem naboru wniosków Wnioski konkursowe w Programie Równać Szanse 2015 Ogólnopolski

Bardziej szczegółowo

Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1

Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1 Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1 Rozdział V: Równania i nierówności I stopnia z jedną niewiadomą Temat: Ćwiczenia utrwalające przekształcanie

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA POZIOM PODSTAWOWY Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA I STOPNIA NA KIERUNKU FIZYKA UW STUDIA I STOPNIA NA KIERUNKU FIZYKA UW I. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). II. SYLWETKA

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA

ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA Szanowny Studencie, ANKIETA SAMOOCENY OSIĄGNIĘCIA KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA bardzo prosimy o anonimową ocenę osiągnięcia kierunkowych efektów kształcenia w trakcie Twoich studiów. Twój głos pozwoli

Bardziej szczegółowo

Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski

Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski Dane w sieciach (i inne historie) Marcin Bieńkowski Jak przechowywać dane w sieciach (strony WWW, bazy danych, ) tak, żeby dowolne ciągi odwołań do (części) tych obiektów mogły być obsłużone małym kosztem?

Bardziej szczegółowo

XXII Konferencja SNM. Porozmawiajmy o walorach dydaktycznych SET Game

XXII Konferencja SNM. Porozmawiajmy o walorach dydaktycznych SET Game 1 XXII Konferencja SNM AKTYWNOŚCI MATEMATYCZNE Katarzyna Sikora, (Chorzów) ksikora35@gmail.com Porozmawiajmy o walorach dydaktycznych SET Game Streszczenie. Podczas warsztatów uczestnicy poznali historię

Bardziej szczegółowo

Program Coachingu dla młodych osób

Program Coachingu dla młodych osób Program Coachingu dla młodych osób "Dziecku nie wlewaj wiedzy, ale zainspiruj je do działania " Przed rozpoczęciem modułu I wysyłamy do uczestników zajęć kwestionariusz 360 Moduł 1: Samoznanie jako część

Bardziej szczegółowo

S88 Badanie rzutu kostką sześcienną

S88 Badanie rzutu kostką sześcienną S88 Badanie rzutu kostką sześcienną Andrzej Kapanowski 29 lutego 2012 Streszczenie Celem ćwiczenia jest zbadanie rzutu kostką sześcienną. Dokument ma być pomocą przy przygotowywaniu opracowania z ćwiczenia

Bardziej szczegółowo

Elementy gry. Cel gry. Dla 1 do 4 graczy, w wieku od 6 do 116 lat. Gra autorstwa Antoine a Bauzy, zilustrowana przez Stéphana Escapę.

Elementy gry. Cel gry. Dla 1 do 4 graczy, w wieku od 6 do 116 lat. Gra autorstwa Antoine a Bauzy, zilustrowana przez Stéphana Escapę. Gra autorstwa Antoine a Bauzy, zilustrowana przez Stéphana Escapę. Dla 1 do 4 graczy, w wieku od 6 do 116 lat Elementy gry 26 kart Kanałów Cel gry 15 kart Kotów 2 karty Opiekunów Celem gry jest zdobycie

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Kryptografia kwantowa

Kryptografia kwantowa Kryptografia kwantowa Krzysztof Maćkowiak DGA SECURE 2006 Plan referatu Wprowadzenie, podstawowe pojęcia Algorytm Grovera Algorytm Shora Algorytm Bennetta-Brassarda Algorytm Bennetta Praktyczne zastosowanie

Bardziej szczegółowo

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW

STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW Ι.CHARAKTERYSTYKA STUDIÓW Studia indywidualne pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat

Bardziej szczegółowo

Wybrane modele handlu międzynarodowego

Wybrane modele handlu międzynarodowego Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Lidia Wasielewska nr albumu: 244871 Praca licencjacka na kierunku matematyka Wybrane modele handlu międzynarodowego Opiekun pracy dyplomowej

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, matematyka, obliczenia, algorytm

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

ZAJĘCIA POZALEKCYJNE Z WIEDZY TECHNICZNEJ

ZAJĘCIA POZALEKCYJNE Z WIEDZY TECHNICZNEJ ZAJĘCIA POZALEKCYJNE Z WIEDZY TECHNICZNEJ Rok szkolny 2009/2010 1.Cel główny Głównym celem jest pogłębienie wiedzy technicznej służącej ogólnemu rozwojowi uczniów, stworzenie możliwości rozbudzenia zainteresowania

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW

STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW I.CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata. II.SYLWETKA ABSOLWENTA

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Zasady redagowania prac dyplomowych

Zasady redagowania prac dyplomowych Zasady redagowania prac dyplomowych realizowanych na Wydziale Fizyki Technicznej Politechniki Poznańskiej Poniższe zasady opracowano na podstawie materiałów źródłowych: Vademecum autora - Wydawnictwo Politechniki

Bardziej szczegółowo

Historia kwadratów magicznych

Historia kwadratów magicznych Kwadraty magiczne Magiczne kwadraty to liczby tak ułożone, że suma każdej kolumny i rzędu jest równa tej samej liczbie. Składają się one z czterech lub więcej pól. Najpopularniejsze maja 9 lub 16 pól.

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

PROGRAM STUDIÓW WYŻSZYCH ROZPOCZYNAJĄCYCH SIĘ W ROKU AKADEMICKIM 2015/2016

PROGRAM STUDIÓW WYŻSZYCH ROZPOCZYNAJĄCYCH SIĘ W ROKU AKADEMICKIM 2015/2016 PROGRAM STUDIÓW WYŻSZYCH ROZPOCZYNAJĄCYCH SIĘ W ROKU AKADEMICKIM 2015/2016 data zatwierdzenia przez Radę Wydziału kod programu studiów pieczęć i podpis dziekana Wydział Matematyczno-Fizyczno-Techniczny

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

UONET+ moduł Sekretariat

UONET+ moduł Sekretariat UONET+ moduł Sekretariat Jak przenieść ucznia objętego obowiązkiem szkolnym do innej szkoły? Aby w systemie UONET+ odnotować fakt przeniesienia ucznia objętego obowiązkiem szkolnym do innej szkoły, należy

Bardziej szczegółowo

Wstęp. Historia Fizyki. dr Ewa Pawelec

Wstęp. Historia Fizyki. dr Ewa Pawelec Wstęp Historia Fizyki dr Ewa Pawelec 1 Co to jest historia, a co fizyka? Po czym odróżnić fizykę od reszty nauk przyrodniczych, nauki przyrodnicze od humanistycznych a to wszystko od magii? Szkolne przedstawienie

Bardziej szczegółowo