Matematyka w praktyce, czyli - po co ja się tego uczę

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka w praktyce, czyli - po co ja się tego uczę"

Transkrypt

1 Należy uczyć się nie po to, aby zostać uczonym, ale po to, aby lepiej żyć Lew Tołstoj- pisarz POWIATOWY KONKURS MATEMATYCZNY dla uczniów klasy VI szkoły podstawowej rok szkolny 00/005 Wasza podróż w głąb matematyki ponownie wiedzie przez wiele sytuacji z życia codziennego, w których możesz się znaleźć teraz i kiedy dorośniesz. W szkole, w sklepie, w terenie, w gazecie, na etykiecie farby, na recepturze stosowania leku, w atlasie, w książce kucharskiej... znajdują się zadania matematyczne. Czy potrafisz je rozwiązywać? Matematyka w praktyce, czyli - po co ja się tego uczę Zadania przygotowawcze Rozwiąż poniższe zadania. Czytaj uważnie. Zapisuj dokładnie wszystkie obliczenia i zapisz słowną odpowiedź. W razie większych problemów możesz poprosić o pomoc kolegów, nauczyciela czy rodziców. Aby zaliczyć ten etap, musisz rozwiązania oddać nauczycielowi. Życzymy Ci sukcesów w zmaganiach z trudnościami! REMONTY... Zad. 1 W pokoju Pawła o wymiarach,5m x,m trzeba pomalować podłogę lakierem. Jedna puszka lakieru wystarcza na pomalowanie m powierzchni podłogi i kosztuje 9,60zł. Jaki będzie koszt zakupu lakieru na pomalowanie tej podłogi? Zad. Salę lekcyjną (sufit i ściany ) trzeba pomalować białą farbą. Wymiary sali są na następujące: długość 10m, szerokość 6m, wysokość m. Na jednej dłuższej ścianie są trzy okna o wymiarach m x,5m, a na drugiej drzwi o wymiarach 1m x,5m. Jeden pojemnik farby wystarcza na pomalowanie 50m powierzchni. Ile pojemników farby trzeba kupić? Zad. W kuchni o wymiarach,5m x,5m trzeba pomalować lamperię do wysokości 1,m. Drzwi mają szerokość 80cm. Ile puszek farby trzeba kupić? Ile trzeba zapłacić? BIAŁY DOM Emolak farba ftalowa Czas schnięcia Wydajność Pojemność Cena 1 godzin 9 m / litr 0,8 litra 11,60 zł Etykieta z puszki farby: Zad. Podłoga w łazience ma kształt prostokąta o wymiarach m i m. Ile kosztowałaby tapeta na pokrycie sufitu, jeżeli w rolce jest 5m tapety, a 1 rolka tapety kosztuje 6zł (tapetę sprzedaje się tylko w całych rolkach)? Ile trzeba kupić płytek terakoty w kształcie kwadratu o boku 0cm, aby ułożyć podłogę w łazience? Zad.5 Stolarz z prostokątnego arkusza sklejki o wymiarach 0,8 m x 0,6 m ma wykonać szufladę o wymiarach 60 cm x 0 cm i wysokości 10 cm. Zaproponuj, jak pociąć sklejkę, aby z tych kawałków zrobić szufladę. ZAKUPY, USŁUGI... Zad. 6 Do pracowni matematycznej zakupiono modele brył: 8 graniastosłupów i 6 ostrosłupów. Koszt tego zakupu wynosi 80zł. Model ostrosłupa jest o 0zł droższy od modelu graniastosłupa. Ile kosztuje model graniastosłupa, a ile ostrosłupa? Zad. 7 Aparat fotograficzny łącznie z futerałem kosztuje 1000 zł. Sam aparat kosztuje o 800 zł więcej niż futerał. Ile kosztuje futerał? 1

2 Zad. 8 Pan Adam kupił w sklepie towary. Zauważył, że kasjer zamiast dodać ich ceny do siebie pomnożył je i wyszło mu 8 zł. Gdy zwrócił uwagę kasjerowi, że ceny artykułów należy dodać kasjer dodał do siebie ceny towarów i znów wyszło mu 8 zł. Ile kosztowały poszczególne produkty? Zad.9 Chleb waży o 1/ więcej niż wzięta do wypieku mąka. Ile mąki należy wziąć na wypiek 00 kg chleba? Zad.10 Pani Magda kupiła 1,5 kg sera po 6,0 zł za 1 kg oraz kawałek ciasta drożdżowego, który kosztował 6,70 zł. Ile reszty otrzymała, jeśli zapłaciła za te zakupy banknotem 50-złotowym? Zad. 11 Cukierki Michałki są o połowę droższe od cukierków Dumle. Cukierki Dumle kosztują x złotych za kilogram. Zosia kupiła 0 dag cukierków Dumle i 0 dag Michałków. Za te zakupy zapłaciła banknotem stuzłotowym. Zapisz w jak najprostszej postaci, ile reszty otrzymała. Zad. 1 Pani Ewa kupiła w sklepie sukienkę, żakiet i kapelusz i zapłaciła w sumie 8 zł. Kapelusz byt o /10 tańszy od sukienki, a żakiet o /5 droższy od ceny sukienki. Ile kosztowała sukienka, ile żakiet, a ile kapelusz? Wskazówka: rysunek obok Zad.1 W sklepie odzieżowym cenę garsonek damskich podwyższono o 1, a cenę garniturów męskich obniżono o 1. Oblicz nowe ceny tych artykułów. Zad. 1 Wykonane przez uczniów plansze matematyczne trzeba zafoliować. Koszt zafoliowania 1dm wynosi,50zł. Jest 6 plansz w kształcie prostokąta o wymiarach 50cm x 80cm. Jaki będzie koszt zafoliowania tych plansz? Zad. 15 Cenę monitora komputerowego obniżono jesienią o 1/5 ceny, a wiosną jeszcze o 1/10. Jaka była początkowa cena tego samochodu, jeżeli po dwóch obniżkach kosztował 88 zł? Zad. 16 Kostka masła ważąca 00g kosztowała wczoraj,0zł. Od dzisiaj to samo masło jest sprzedawane w kostkach tańszych, ale jednocześnie mniejszych. Teraz kostka masła waży 180g i kosztuje,10zł. Czy masło staniało czy podrożało? Zad. 17 Mydło w kształcie prostopadłościanu po pewnym czasie zmniejszyło swoje wymiary do połowy. Ile razy większą objętość miało to mydło przed zmydleniem? Zad.18 W stopie miedzi z cynkiem stosunek wagowy miedzi do cynku jest równy 1 : 8. Jaki ułamkiem wagi całego stopu stanowi waga miedzi, a jaki waga cynku? Ile kg waży ten stop, jeżeli miedzi jest o,5 kg więcej niż cynku?

3 OPŁATY ZA MIESZKANIE Zad.19 Rysunki przedstawiają wskazania liczników wodomierzy ciepłej i zimnej wody w dniach 1 września i 1 października. Jakie było zużycie wody w ciągu miesiąca? Wynik podaj z dokładnością do 1 m. Zad. 0 Ile zapłacą państwo Kowalscy za prąd, jeśli cena 1 kwh wynosi 0,9 zł? Nazwa urządzenia Ilość Moc [Wat] Czas pracy (dziennie) Żarówka 6 60 godz. Pralka , godz. Grzejnik elektryczny 00 7 godz. telewizor 1 10 godz. Kuchnia elektryczna 700 1, godz. Radio 1 0 godz. Komputer 1 10,5 godz. Razem zużycie za miesiąc styczeń Do zapłaty Zużycie [kwh] (za m-c styczeń) Zad. 1 Rodzina Kowalskich zajmuje mieszkanie spółdzielcze o powierzchni 6, m. Co miesiąc wpłaca należność za czynsz w wysokości 91,67 zł, za centralne ogrzewanie i zużycie wody. Uzupełnij tabelkę wiedząc, że licznik zimnej wody wskazał zużycie - 11 m, a licznik ciepłej wody - m. Oblicz ile złotych państwo Kowalscy wpłacą w tym miesiącu do kasy spółdzielni mieszkaniowej. PODRÓŻE... Należność za Czynsz Centralne ogrzewanie (cena ogrzania 1 m mieszkania wynosi 1,8 zł) Zużycie wody (cena 1 m wody wynosi,7 zł) Podgrzanie wody (cena podgrzania 1 m wody wynosi 17,8 zł) Razem Kwota Zad. O godzinie 8 0 wyruszył z Warszawy samochód do Poznania i jechał z prędkością średnią 60km/h. Po przebyciu 180km samochód zepsuł się, naprawa zajęła pół godziny. Do Poznania pozostało jeszcze 1km. Z jaką średnią prędkością trzeba jechać, aby zdążyć do Poznania na godz. 1.00? Zad. Dwa samochody wyruszyły w tym samym czasie, z tego samego miejsca, lecz w przeciwnych kierunkach. Jeden samochód pokonał w ciągu godziny drogę o 0 km dłuższą niż drugi. Po dwóch godzinach odległość między nimi wynosiła 80 km. Z jaką prędkością jechał każdy samochód? Zad. Drogę hamowania samochodu osobowego(w metrach) oblicza się według uproszczonego wzoru: s = 0,006 v gdzie v prędkość samochodu w kilometrach na godzinę (km/h) Załóżmy, że samochód jedzie z prędkością 50 km/h. Wówczas droga hamowania samochodu s 0, , będzie równa: Zbadaj, ile metrów przejedzie samochód po naciśnięciu przez kierowcę hamulca przy założeniu, że samochód jedzie z prędkością: 0 km/h, 70 km/h 110 km/h i 00 km/h Zad. 5 Podczas jazdy samochodem pan Anatol zużył,5 litra benzyny, co równało się 1/6 benzyny znajdującej się w zbiorniku paliwa. Podczas drugiej jazdy zużył 0, benzyny, która pozostała po pierwszej jeździe. Podczas trzeciej jazdy zużył połowę tego, co jeszcze zostało. Ile litrów paliwa zostało po trzech jazdach? Zad. 6 Motocyklista w ciągu 7 / 1 godziny przejechali 7 / 15 zaplanowanej trasy. Jaką drogę zaplanował do przejechania motocyklista, jeżeli jechał ze średnią prędkością 69 / 5 km/h? Zad. 7 Z dwóch miast wyruszyli na spotkanie dwaj motocykliści. Jeden wyjechał o godzinie 8 00 i jechał z prędkością 5 km/h, drugi wyjechał o 9 00 i jechał z prędkością 6 km/h. Spotkali się o godzinie Jaka była odległość między miastami? m

4 Zad. 8 Z dwóch lotnisk odległych o 1080km wyleciały o godz naprzeciw siebie dwa samoloty. O której godzinie samoloty mijały się, jeżeli jeden z nich przebył całą odległość w ciągu 6 godzin, a drugi w ciągu trzech godzin? Zad. 9 O godzinie 8 0 wyjechała z miasta ciężarówka z prędkością 5km/h. O godzinie 9 0 z tego samego miasta wyruszyła druga ciężarówka jadąc w przeciwnym kierunku z prędkością 9km/h. Jak daleko będą od siebie obie ciężarówki o godz Zad.0 Kontener TIR-a ma wymiary jak na rysunku. Jaką maksymalną liczbę skrzyń o wymiarach: 1,5 m x 1,5 m x 0,75 m można załadować na TIR-a?? Zad.1 Dwa pociągi jadą po równoległych torach w przeciwnych kierunkach, jeden z prędkością 0 km/h, a drugi 50 km/h. Podróżny jadący w drugim pociągu zauważył, że pierwszy pociąg mijał go przez 6 s. Jaka jest długość pierwszego pociągu? Zad. Pierwszy pociąg wyruszył ze stacji o 1 00 i jechał z prędkością 60 km/godz. Drugi wyruszył godziny później i jechał w tym samym kierunku z prędkością 90 km/godz. O której godzinie drugi pociąg dogoni pierwszy? Zad. Uzupełnij:...h min... s + h 55 min 8 s h... min s Zad. Korzystając z powyższej tabeli odpowiedz na pytania: a) Jak długo jedzie pociąg z Ziębic do Wrocławia? b) Jak daleko jest z Kamieńca Ząbkowickiego do Wrocławia? c) Z jaką średnią prędkością w km/h jedzie pociąg na trasie trasie Kłodzko - Wrocław? ROZKŁAD JAZDY POCIĄGÓW KILOMETRY MIEJSCOWOŚĆ GODZINY 0 Kłodzko 15 : 0 7 Kamieniec Ząbkowicki 16 : 1 Ziębice 16 : 9 68 Strzelin 16 : 5 9 Wrocław 17 : 0 Zad.5 Rowerzysta jechał przez godziny z prędkością km/godz, a potem przez godziny z prędkością 17 km/godz. Jaka była średnia prędkość rowerzysty na całej trasie? RÓŻNE... Teraz rozwiąż kilka zadań, aby poprawić przed konkursem sprawność liczenia, zdolność logicznego myślenia oraz wyobraźnię. 1l wody waży 1 kg 1m = 1000l Zad.6 W pewnej szkole jest basen o długości 5m. Każdy z sześciu torów ma 1,m szerokości. Basen ma głębokość m. a) Ile waży woda w tym basenie? b) Jak długo trwałoby napełnianie tego basenu, gdyby woda wlewała się z prędkością 100l/min? Zad.7 Kran z ciepłą wodą napełnia basen w ciągu trzech godzin, a kran z zimną wodą w ciągu 6 godzin. W jakim czasie napełnią basen oba krany? Zad.8 Szczelnie zamknięte prostopadłościenne szklane naczynie o krawędzi 5 cm, 1 cm i 0 cm jest częściowo napełnione wodą. Naczynie stoi na najmniejszej ścianie, a woda sięga do wysokości 16 cm. Do jakiej wysokości sięga woda, gdy naczynie będzie stało na największej ścianie?

5 Zad.9 Miasto jest podzielone na dzielnice. W pierwszej dzielnicy mieszka /15 liczby ogółu mieszkańców, a w drugiej 7/8 liczby mieszkańców pierwszej dzielnicy, a w trzeciej 11/5 liczby mieszkańców dwóch pierwszych dzielnic, a w czwartej 000 mieszkańców. Oblicz, ile chleba należy przygotować dla mieszkańców tego miasta na trzy dni świąt, zakładając, że przeciętnie jeden mieszkaniec zjada pół kg chleba. Zad.0 Która jest teraz godzina, jeśli do końca doby pozostało / 5 tego czasu, jaki minął od początku doby? Zad.1 Znajdź dwie liczby, jeżeli wiesz, że ich różnica jest równa 5 i druga z nich stanowi /8 pierwszej? Zad. Oblicz x i sprawdź ( rozwiąż metodą działań przeciwnych lub spróbuj narysować graf): x a) 1 b) 0,75 1,5x, 16,5 :,5 1,5 1 0,8 5 Zad. Krzyś rozdał wszystkie swoje muszelki. Zosi dał /10 wszystkich muszelek i jeszcze, a Basi dał ¼ wszystkich muszelek i jeszcze 6 muszelek. Która z dziewczynek dostała więcej muszelek? Zad. Zmęczeni turyści weszli do schroniska, zamówili pierogi i zasnęli. Kiedy obudził się pierwszy, pyszne jedzenie stało na stole, więc zjadł 1 / pierogów i znów zasnął. Obudził się drugi, zjadł 1 / pozostałych pierogów i znów zasnął. Potem obudził się trzeci turysta, zjadł 1 / tego, co zostało i wtedy na półmisku zostało 8 pierogów. Jak podzielić te 8 pierogów pomiędzy turystów, żeby każdy zjadł po tyle samo pierogów? : : : Wskazówka Rozwiąż za pomocą grafu X 8 PASZTET Z WĄTRÓBEK DROBIOWYCH przepis na 1 kg gotowej potrawy 60 dag wątróbek 0 dag słoniny g pieprzu 0 dag cebuli dag soli lub analizując zadanie od końca III II I Zad. 5 a) W domu wczasowym na kolację trzeba przygotować 50 porcji pasztetu według podanego przepisu. Jedna porcja waży 50 g. Ile każdego ze składników należy przygotować? b) Rodzina Kowalskich wybrała się na obiad do restauracji. Oto ich rachunek. Uzupełnij go. RACHUNEK NR 5 Cena 1 porcji w zł Liczba porcji Razem KOTLET 10,70 SCHABOWY FRYTKI,05 ZIEMNIAKI 1,0 SURÓWKA,15 NAPÓJ,80 SUMA + OBSŁUGA 1/5 sumy DO ZAPŁATY Dobór i opracowanie zadań: Jadwiga Sowińska, Bożena Dudek, Mariola Szałapska źródło: 5

Klasa VI Szkoły Podstawowej rok szkolny 2004/2005

Klasa VI Szkoły Podstawowej rok szkolny 2004/2005 Należy uczyć się nie po to, aby zostać uczonym, ale po to, aby lepiej żyć Klasa VI Szkoły Podstawowej rok szkolny 2004/2005 Jesteś uczniem klasy VI. Twoja podróż w głąb matematyki ponownie wiedzie przez

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

1. Oblicz nowe ceny tych artykułów.

1. Oblicz nowe ceny tych artykułów. POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS VI SZKÓŁ PODSTAWOWYCH ZADANIA PRZYGOTOWAWCZE Kasia jest juŝ w szóstej klasie. Często na lekcjach matematyki podobnie jak i Wy zadaje sobie pytanie: Po co

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka

Trenuj przed sprawdzianem! Matematyka mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Rodzina Kowalskich: pan Jan, pani Maria i syn Karol postanowili

Bardziej szczegółowo

Czas trwania: 60minut

Czas trwania: 60minut Konkurs MATEMATYKA NA BUDOWIE dla gimnazjalistów Numer ewidencyjny 22 października 2014r. 1. Sprawdź, czy zestaw konkursowy zawiera 13 stron. Ewentualne braki zgłoś komisji konkursowej. 2. Na pierwszej

Bardziej szczegółowo

ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!!

ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!! ZAPRASZAMY DO II ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA ROZWIĄZANYCH ZADAŃ UPŁYWA 6 GRUDNIA 2012 R. ZAPRASZAMY!!! LIGA ZADANIOWA KLASA IV Ania przeczytała 6 książek. W tym samym czasie Hania

Bardziej szczegółowo

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 %

Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zadanie 1( 15 pkt) Zamień procenty na ułamki: a) 4%, 30%, 4,2%, 0,8%, 64%, 120%, 242,2%, 22,5% b) 2 4 %, 6 %, %, %, 14 %, 33 % Zad. 2 ( 15 pkt ) Zamień ułamki na procenty: a) 0,36; 0,03; 3,6; 0,4; 0,375;

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 3

Trenuj przed sprawdzianem! Matematyka Test 3 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Dom państwa Wiśniewskich stoi na działce o powierzchni

Bardziej szczegółowo

MATEMATYCZNEJ LIGI ZADANIOWEJ

MATEMATYCZNEJ LIGI ZADANIOWEJ ZAPRASZAMY DO ROZWIĄZANIA ZADAŃ V ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA PRAC UPŁYWA 5 KWIETNIA 2013 R. POWODZENIA! KLASA IV Na kolonie wyjechało 131 osób trzema autobusami. W pierwszym i

Bardziej szczegółowo

KARTA PRACY GRUPOWEJ

KARTA PRACY GRUPOWEJ Temat: Remont mieszkania KARTA PRACY GRUPOWEJ Uczniowie podchodzą do nauczyciela i losują kartki z jednym z napisów: POKÓJ, HOL, KUCHNIA, ŁAZIENKA. Karteczka określa przynależność do grupy. Dzieci rozwiązują

Bardziej szczegółowo

1. Dom zajmuje powierzchni działki. Ile to m 2? A. 80 m 2 B. 100 m 2 C. 120 m 2 D. 160 m 2

1. Dom zajmuje powierzchni działki. Ile to m 2? A. 80 m 2 B. 100 m 2 C. 120 m 2 D. 160 m 2 1 Fabryka Nowy dom zabawek... Imię i nazwisko ucznia...... Klasa Suma punktów Nowy dom...... Data Ocena Informacja do zadań od 1. do 6. Państwo Leśniewscy sprzedali mieszkanie w bloku i kupili działkę

Bardziej szczegółowo

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3

Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 Zadanie 1. Oblicz: 65 % liczby 80, 28 % liczby 12,4, 4,6 % liczby 32 3 2. Odp.: 52; 3,472; 1 377/450 Zadanie 2. Oblicz: 40 % z 28 % liczby 38, 24,6 % z 15 % liczby 27,4. Odp.: 4,256; 1,01106 Zadanie 3.

Bardziej szczegółowo

TEST NR 1 TEST ABSOLWENTA SZKOŁY PODSTAWOWEJ Z MATEMATYKI

TEST NR 1 TEST ABSOLWENTA SZKOŁY PODSTAWOWEJ Z MATEMATYKI TEST NR 1 TEST ABSOLWENTA SZKOŁY PODSTAWOWEJ Z MATEMATYKI Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie polecenia. Rozwiązania i odpowiedzi zapisz czytelnie w miejscach do tego przeznaczonych.

Bardziej szczegółowo

ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ

ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: 12.06.2006. Cel główny: Obserwacja osiągniętego poziomu sprawności

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

Lista 8 Wyrażenia wymierne. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji.

Lista 8 Wyrażenia wymierne. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji. Lista 8 Wyrażenia wymierne. Zad 1. Narysuj wykres funkcji. Przykład 1:. Przypomnijmy, że: Jeżeli wykres funkcji przesuniemy o wektor, to otrzymamy wykres funkcji. Funkcję nazywamy funkcja podstawową, a

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

Matematyka test dla uczniów klas trzecich

Matematyka test dla uczniów klas trzecich Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2009/2010 Czas pracy: 60 minut Ryzyko dysleksji [suma punktów] Imię i nazwisko... kl.3... W zadaniach od 1. do 5. podkreśl poprawne

Bardziej szczegółowo

Klasa 3. Odczytywanie wykresów.

Klasa 3. Odczytywanie wykresów. Klasa 3 Odczytywanie wykresów 1 Wykres obok przedstawia zmiany temperatury podczas pewnego zimowego dnia w Giżycku Jaką temperaturę powietrza pokazywał tego dnia termometr o godzinie 18 00? A 0 C B 1 C

Bardziej szczegółowo

Test badania kompetencji z matematyki w klasie VI Zakres materiału-klasa IV,V, i pierwszy semestr klasy VI

Test badania kompetencji z matematyki w klasie VI Zakres materiału-klasa IV,V, i pierwszy semestr klasy VI Test badania kompetencji z matematyki w klasie VI Zakres materiału-klasa IV,V, i pierwszy semestr klasy VI DROGI UCZNIU! PRZED TOBĄ ZESTAW 4 PYTAŃ Z MATEMATYKI. UWAŻNIE CZYTAJ POLECENIA I ROZWIĄZUJ JE

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ... pieczątka szkoły... kod pracy ucznia KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na etapie rejonowym konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA

Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA GIMNAZJUM Przed Tobą zestaw zadań konkursowych. Na ich rozwiązanie masz 90 minut. wybieraj tak, aby osiągnąć jak najlepszy wynik. POWODZENIA Zadanie 1. Trzy lata temu posadzono przed domem krzew. Co roku

Bardziej szczegółowo

ZADANIA NA KARTACH. Właścicielem ogródka jest pan Nowakowski. Na działce rosną 3 jabłonie, 2 grusze, winogron i wiele odmian kwiatów.

ZADANIA NA KARTACH. Właścicielem ogródka jest pan Nowakowski. Na działce rosną 3 jabłonie, 2 grusze, winogron i wiele odmian kwiatów. Anna Szynkowska ZADANIA NA KARTACH Na lekcjach matematyki dużo czasu poświęca się na rozwiązywanie zadań tekstowych, które przysparzają uczniom wiele problemów. Uczniowie często nie potrafią czytać tekstu

Bardziej szczegółowo

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min I Ty możesz zostać Pitagorasem Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz II Luty 2014 Liczba punktów 30, czas pracy 90min mgr Iwona Tlałka Zadanie 1. (0 1) I Ty możesz zostać Pitagorasem

Bardziej szczegółowo

1. Cena produktu po podniesieniu stawki VAT z 7% do 22% wzrosła o 90 zł. Ile jest równa nowa cena produktu?

1. Cena produktu po podniesieniu stawki VAT z 7% do 22% wzrosła o 90 zł. Ile jest równa nowa cena produktu? Zadania do 3 tury LIGII PRZEDMIOTOWEJ MTEMTYK Klasa 1 1. ena produktu po podniesieniu stawki VT z 7% do 22% wzrosła o 90 zł. Ile jest równa nowa cena produktu? 2. W Polsce olej otrzymuje się głównie z

Bardziej szczegółowo

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3

Bardziej szczegółowo

1. Liczby wymierne dodatnie

1. Liczby wymierne dodatnie 1 1. Liczby wymierne dodatnie 1.7. Uczeń stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (także jednostek prędkości, gęstości,

Bardziej szczegółowo

XXII MINIKONKURS MATEMATYCZNY

XXII MINIKONKURS MATEMATYCZNY KOD UCZNIA XXII MINIKONKURS MATEMATYCZNY DLA UCZNIÓW KLAS 4 etap szkolny 1. Liczba o dwa większa od liczby dwa razy większej od 6724 to: A. 6 728 B. 2 688 C. 13 42 D. 13 40 2. Do stołówki przyszła grupa

Bardziej szczegółowo

Mer* miasta francuskiego Bordeaux (czyt. bordo) zapytany przez dziennikarza o wiek swoich dzieci, odpowiedział:

Mer* miasta francuskiego Bordeaux (czyt. bordo) zapytany przez dziennikarza o wiek swoich dzieci, odpowiedział: FINAŁ XX OGÓLNOPOLSKICH IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH Zadania dla klasy 6 Na rozwiązanie pięciu zadań masz 90 minut. Kolejność rozwiązywania zadań jest dowolna. Maksymalną liczbę punktów

Bardziej szczegółowo

KLASA DRUGA MATEMATYKA. 6 10 (odpowiednio) atomów, cząsteczek lub jonów. 2,28 10 km. Zapisz tę odległość bez użycia potęgi

KLASA DRUGA MATEMATYKA. 6 10 (odpowiednio) atomów, cząsteczek lub jonów. 2,28 10 km. Zapisz tę odległość bez użycia potęgi KLASA DRUGA MATEMATYKA Zadanie 1. Jakie wyrażenie otrzymamy po podniesieniu do potęgi: (2xy) 4 Zadanie 2. 3 3 Jaka liczba jest wynikiem ilorazu 2 : 16 Zadanie3. 1 mol to taka ilość materii, która zawiera

Bardziej szczegółowo

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw średniotrudny

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw średniotrudny Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw średniotrudny MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Samochód dostawczy przejeżdża średnio 36 km w ciągu

Bardziej szczegółowo

8 + 66 =.. 48 + 20 =... 35 + 46 =... 53 7 =... 89 50 =... 72 58 =...

8 + 66 =.. 48 + 20 =... 35 + 46 =... 53 7 =... 89 50 =... 72 58 =... Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2011/2012 Etap szkolny (60 minut) Ryzyko dysleksji [suma punktów].... Imię i nazwisko Klasa 1. Oblicz. 8 + 66 =.. 48 + 20 =...

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2013/2014 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 10 stron.

Bardziej szczegółowo

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są. GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:

Bardziej szczegółowo

Małe olimpiady przedmiotowe

Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Strona 1 z 12 liczba osób Informacje do zadań 1. i 2. W dwóch dziesięcioosobowych grupach uczniów przeprowadzono test sprawności notując czas (w sekundach) wykonywania ćwiczenia. Wyniki przedstawia poniższy

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe

Test z matematyki. Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, test składa się z

Bardziej szczegółowo

MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?

MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 11 KWIETNIA 2015 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Koszt ubezpieczenia samochodu w pewnej firmie

Bardziej szczegółowo

TEST CAŁOROCZNY KL I

TEST CAŁOROCZNY KL I TEST CAŁOROCZNY KL I Gr. A. Oblicz wartość wyrażenia: 3 a) - : + 3 4 4 3 b) : ) 4 4 8 6 7 c) +,8 9 3. Znajdź rozwinięcia dziesiętne liczb: a) 3 b) 5 5 3. Zaokrąglij do części setnych: a),47 b),964 4. a)

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA KWIECIEŃ 2014. miejsce na naklejkę z kodem. dysleksja EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem dysleksja EGZAMIN W KLASIE

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

Małopolski Konkurs Matematyczny 01.12.2010 - etap rejonowy

Małopolski Konkurs Matematyczny 01.12.2010 - etap rejonowy Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Zanim przystąpisz do rozwiązywania testu, wpisz swoje imię i nazwisko, datę oraz miejsce urodzenia, nazwę szkoły oraz imię i nazwisko nauczyciela przygotowującego

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

Procent (od łac. per centum - na sto) to sposób wyrażenia liczby jako ułamka o mianowniku 100. Procent oznaczamy symbolem %.

Procent (od łac. per centum - na sto) to sposób wyrażenia liczby jako ułamka o mianowniku 100. Procent oznaczamy symbolem %. 1. Co to jest procent?... 1 2. Jak obliczyć procent podanej liczby?... 2 3. Jak znaleźć liczbę, której pewien procent znamy?... 7 4. Jak obliczyć, jakim procentem jednej liczby jest druga liczba?... 12

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL PESEL miejsce na naklejkę

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2013/2014

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2013/2014 . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2013/2014 Drogi Uczniu! ETAP SZKOLNY Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO MARCA 05 CZAS PRACY: 90 MINUT Informacja do zadań 3 Pracownik salonu samochodowego otrzymuje premię za każdy sprzedany

Bardziej szczegółowo

MIĘDZYSZKOLNY KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ SPECJALNYCH PRZEMYŚL 16 MARZEC 2012r ZASADNICZA SZKOŁA ZAWODOWA

MIĘDZYSZKOLNY KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ SPECJALNYCH PRZEMYŚL 16 MARZEC 2012r ZASADNICZA SZKOŁA ZAWODOWA MIĘDZYSZKOLNY KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ SPECJALNYCH PRZEMYŚL 1 MARZEC 2012r ZASADNICZA SZKOŁA ZAWODOWA Instrukcja dla ucznia 1. Zestaw zawiera 10 zadań 2. Czytaj uważnie wszystkie teksty i

Bardziej szczegółowo

Smaczne ziemniaki. A. 20 arów. B. 60 arów. C. 100 arów. D. 140 arów. 3. W czasie przechowywania ziemniaków przez zimę tracą one około 10

Smaczne ziemniaki. A. 20 arów. B. 60 arów. C. 100 arów. D. 140 arów. 3. W czasie przechowywania ziemniaków przez zimę tracą one około 10 Smaczne ziemniaki 1. W piątek 18 kwietnia Ania sadziła z rodzicami ziemniaki. Mama powiedziała jej, że ziemniaki wzejdą najwcześniej za 20 dni. Ania obliczyła, że będzie to : A. w ostatnim tygodniu kwietnia.

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: szkolny 27 listopada 2012 r. 90 minut Informacje dla ucznia

Bardziej szczegółowo

Przygotowanie do SPRAWDZIANU w szóstej klasie ZESTAWY ZADAŃ

Przygotowanie do SPRAWDZIANU w szóstej klasie ZESTAWY ZADAŃ Przygotowanie do SPRAWDZIANU w szóstej klasie ZESTAWY ZADAŃ Metoda 1 Najbardziej uniwersalna metoda polega na rozwiązaniu zadania tak, jakby było zadaniem otwartym (czyli bez podanych odpowiedzi do wyboru),

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej. Opracowanie: mgr Władysława Paczesna

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej. Opracowanie: mgr Władysława Paczesna XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej Opracowanie: mgr Władysława Paczesna Zapraszamy Cię do wzięcia udziału w Międzyszkolnej Lidze

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA KWIECIEŃ 2014 UZUPEŁNIA UCZEŃ. miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i wyrażenia algebraiczne... 7 Funkcje... 12 Wielokąty, koła i okręgi... 18 Przekształcenia geometryczne... 23 Figury podobne... 28

Bardziej szczegółowo

Który z chłopców znalazł najwięcej tomów? Wybierz właściwą odpowiedź spośród podanych.

Który z chłopców znalazł najwięcej tomów? Wybierz właściwą odpowiedź spośród podanych. Zadanie 4. (0 ) Czterej bracia znaleźli na strychu kompletne wydanie 25-tomowej encyklopedii, której tomy były ponumerowane liczbami zapisanymi znakami rzymskimi. W tabeli przedstawiono informacje o tomach

Bardziej szczegółowo

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód?

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? Segment A.I Kinematyka I Przygotował: dr Łukasz Pepłowski. Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? v = s/t, 90 km/h. Zad.

Bardziej szczegółowo

REGULAMIN SZKOLNEGO KONKURSU MATEMATYCZNEGO DLA KLASY TRZECIEJ

REGULAMIN SZKOLNEGO KONKURSU MATEMATYCZNEGO DLA KLASY TRZECIEJ REGULAMIN SZKOLNEGO KONKURSU MATEMATYCZNEGO DLA KLASY TRZECIEJ Szkolny konkurs matematyczny zostaje ogłoszony wcześniej na apelu szkolnym. Organizator wywiesza również informację na tablicy ogłoszeń o

Bardziej szczegółowo

Zestaw sprawdzianów. z matematyki dla klasy I gimnazjum. Zgodny z programem Matematyka z plusem

Zestaw sprawdzianów. z matematyki dla klasy I gimnazjum. Zgodny z programem Matematyka z plusem Zestaw sprawdzianów z matematyki dla uczniów klas pierwszych jest zgodny z programem nauczania Matematyka z plusem. Został on opracowany z myślą o nauczycielach uczących według tego programu - w przygotowaniu

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA

II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA II POWIATOWY KONKURS MATEMATYCZNY 1z10 o tytuł MISTRZA LOGICZNEGO MYŚLENIA Załącznik nr 8 Część pisemna szkoła podstawowa Kod ucznia Drogi uczniu, przed Tobą zestaw 20 problemów, masz na ich rozwiązanie

Bardziej szczegółowo

Matematyka test dla uczniów klas trzecich

Matematyka test dla uczniów klas trzecich Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2010/2011 Czas pracy: 60 minut Ryzyko dysleksji [suma punktów] Imię i nazwisko... kl.3... 1. Oblicz. 76 + 8 =... 47 + 30 =...

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2 Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B Zadanie. ( pkt.) W baku samochodu Fiat Uno mieści się 40 l benzyny. Samochód ten spala przeciętnie 5, l benzyny na 00 km. Czy trzeba będzie

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH. Zadania dla klasy 6

FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH. Zadania dla klasy 6 FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH Zadania dla klasy 6 Na rozwiązanie pięciu zadań masz 90 minut. Kolejność rozwiązywania zadań jest dowolna. Maksymalną liczbę punktów możesz uzyskać

Bardziej szczegółowo

Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas

Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas Projektas Standartizuotų mokinių pasiekimų vertinimo ir įsivertinimo įrankių bendrojo lavinimo mokykloms kūrimas, II etapas 2013 MOKSLAS EKONOMIKA SANGLAUDA EUROPOS SĄJUNGA EUROPOS SOCIALINIS FONDAS Kuriame

Bardziej szczegółowo

Sprawdź, co już umiesz! (2)

Sprawdź, co już umiesz! (2) Sprawdź, co już umiesz! (2) 1. Suma 16,95 + 8,5 jest równa: A. 27,80 B. 27,70 C. 25,45 D. 24,45 2. Różnica 52,7 24,46 jest równa: A. 38,36 B. 38,34 C. 28,36 D. 28,24 3. Iloczyn 16,8 9,8 jest równy: A.

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.

Bardziej szczegółowo

Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D.

Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki. Zadania zamknię te. A. całkowitą B. ujemną C. niewymierną D. Elżbieta Friedrich mailto:elaf@interia.pl nauczyciel matematyki i informatyki Gimnazjum nr 5 w Tychach Test dla uczniów gimnazjum sprawdzający wiadomości z matematyki Zadania zamknię te Zadanie. a) b)

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód?

Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód? PRĘDKOŚĆ, DROGA, CZAS. Zadanie 1. Samochód jadąc z prędkością 60km/h pokonał 140km. Jak długo jechał ten samochód? Zadanie 2. Dwa samoloty wystartowały jednocześnie z dwóch lotnisk oddalonych o 3400km

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ. MATEMATYKA Instrukcja

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Układ graficzny CKE 2011 KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

Małe Olimpiady Przedmiotowe. Test z matematyki

Małe Olimpiady Przedmiotowe. Test z matematyki Małe Olimpiady Przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa nr 17 Szkoła Podstawowa nr 18 Drogi Uczniu, Test składa się z

Bardziej szczegółowo

Rachunkowość zawodowa baza pytań przykładowych 2015 r.

Rachunkowość zawodowa baza pytań przykładowych 2015 r. Pytanie nr 1 Wynagrodzenie pracownika zatrudnionego w systemie akordowym, który zebrał w ciągu miesiąca 800 koszyczków truskawek, otrzymując 1 zł za 1 koszyczek, wyniesie: A) 1200 zł B) 800 zł C) 400 zł

Bardziej szczegółowo

Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej

Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Sprawdzian Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Grupa A Powodzenia!... imi i nazwisko ucznia 1 a) Zapisz liczby cyframi arabskimi. XIX XXIV b) Zapisz liczby cyframi rzymskimi.

Bardziej szczegółowo

Zadanie 6. (0-1) Który z poniższych obwodów należy zmontować w celu dokonania pomiaru oporu silnika?

Zadanie 6. (0-1) Który z poniższych obwodów należy zmontować w celu dokonania pomiaru oporu silnika? Zadania z fizyki przygotowujące do egzaminu gimnazjalnego Zadanie 1. (0-1) Szkółka leśna zabezpieczona jest przewodem elektrycznym. Przewód otaczający szkółkę leśną ma opór 1000Ω., a zasilany jest z akumulatora

Bardziej szczegółowo

MaTeMaTYka arkusz egzaminacyjny nr 2

MaTeMaTYka arkusz egzaminacyjny nr 2 02 arkusz egzaminacyjny Imię i nazwisko Data Klasa MaTeMaTYka arkusz egzaminacyjny nr 2 Drogi Gimnazjalisto, przed Tobą arkusz egzaminacyjny sprawdzający twoją wiedzę z matematyki. Przed przystąpieniem

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Kod ucznia.. KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Witamy Cię na pierwszym etapie Konkursu Matematycznego. Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej. Opracowanie: mgr Władysława Paczesna

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej. Opracowanie: mgr Władysława Paczesna XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej Lidze

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.

KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. KONKURS MATEMATYCZNY STOŻEK 007/008 1. Na rozwiązanie 5 zadań masz 90 minut.. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. 3. W rozwiązaniach zadań przedstawiaj swój tok rozumowania. 4. Rozwiązania

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

1. Śnieg zaczął padać za piętnaście dziewiąta wieczorem i padał aż do wpół do jedenastej rano następnego dnia. Ile czasu padał śnieg?

1. Śnieg zaczął padać za piętnaście dziewiąta wieczorem i padał aż do wpół do jedenastej rano następnego dnia. Ile czasu padał śnieg? ZADANIA NA FERIE I. Obliczenia czasowe i kalendarzowe 1. Śnieg zaczął padać za piętnaście dziewiąta wieczorem i padał aż do wpół do jedenastej rano następnego dnia. Ile czasu padał śnieg? 2. Kasia przeczytała

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Poprawna odpowiedź Zad. 5 Zad.

Bardziej szczegółowo