WYTWARZANIE POWŁOK METODĄ ELEKTROLITYCZNĄ I ZANURZENIOWĄ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYTWARZANIE POWŁOK METODĄ ELEKTROLITYCZNĄ I ZANURZENIOWĄ"

Transkrypt

1 POLITECHNIKA GDAŃSKA KATEDRA INŻYNIERII MATERIAŁOWEJ WYTWARZANIE POWŁOK METODĄ ELEKTROLITYCZNĄ I ZANURZENIOWĄ INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Opracowanie: Dr inż. Beata Świeczko-Żurek GDAŃSK 2009

2 INŻYNIERIA POWIERZCHNI WPROWADZENIE Inżynieria powierzchni metali obejmuje w zasadzie wszystkie naukowe i techniczne aspekty wytwarzania warstw wierzchnich i nanoszenia powłok spełniających funkcje ochronne w stosunku do metali podłoża (rys.1) [1]. Rys.1 Inżynieria powierzchni metali [1] Podczas eksploatacji maszyn i urządzeń, materiały z których zostały one wytworzone ulegają zużyciu. Proces zużycia jest spowodowany współdziałaniem różnych czynników, z dominacją czynnika, którego ujawnienie pozwala zastosować właściwe sposoby przeciwdziałania niszczeniu. Procesy zużycia przebiegają od powierzchni ciała stałego w głąb, prowadząc do zmian właściwości i uszkodzeń, a zasięg oddziaływania wymuszeń zewnętrznych, stanowiących przyczyny zużycia eksploatacyjnego wyznacza tzw. eksploatacyjną warstwę wierzchnią. Pod tym pojęciem rozumie się strefę materiału zawartą między powierzchnią zewnętrzną a umowną powierzchnią wewnątrz ciała stałego, ograniczającą zasięg oddziaływania wymuszeń zewnętrznych. Pojęcie to jest analogiczne do pojęcia warstwy wierzchniej zawartej w polskiej normie. Warstwa wierzchnia to część materiału, z jednej strony ograniczona rzeczywistą powierzchnią ciała stałego, a z drugiej materiałem rdzenia, składająca się z kilku stref przechodzących płynnie jedna w drugą, o zróżnicowanych rozmiarach, odmiennych cechach fizycznych i niekiedy chemicznych, w stosunku do cech materiału rdzenia [1]. Najpowszechniej występującymi procesami powierzchniowego niszczenia materiałów są: korozja i zużycie przez tarcie. Przeciwdziałanie zużyciu rozpoczyna się w procesie projektowania konstrukcji, lub maszyny i musi być kontynuowane w procesie wytwarzania i eksploatacji. Jednym z podstawowych problemów jest dobór materiałów do danych warunków eksploatacji zabezpieczający trwałość w przewidywanym czasie projektowym użytkowania konstrukcji, w fazie projektowania m.in. kształtów geometrycznych elementów konstrukcji, minimalizujących podatność na niszczenie powierzchniowe, zastosowanie właściwych metod technologicznych podczas wytwarzania, które nie wywołują obniżenia tej podatności. Na wszystkich tych etapach ciągle poszukuje się sposobów zmniejszenia zużycia [1]. Kształtując za pomocą odpowiedniej technologii warstwę wierzchnią elementów maszyn i urządzeń, można wydatnie zwiększyć jej trwałość. Zmiany właściwości warstwy wierzchniej materiałów metalowych mogą być wywołane przez pojedyncze lub łączne oddziaływanie sił mechanicznych i elektrycznych, ciepła, czynników chemicznych, a ich przebieg jest płynny od powierzchni w kierunku rdzenia. Zmiany właściwości można dokonać również przez trwałe naniesienie na chronioną powierzchnię warstwy materiału stanowiącej powłokę, charakter zmian właściwości jest wówczas skokowy. Przez określenie powłoka ochronna przyjmuje się warstwę metalu, stopu, materiału ceramicznego,

3 tworzywa sztucznego i in. naniesioną trwale na powierzchnię metalu chronionego, który zasadniczo pozostaje w tym samym stanie w jakim był przed nałożeniem powłoki. Warstwy wierzchnie i powłoki ochronne przyjęto umownie nazywać warstwami powierzchniowymi. Podstawową funkcją warstw powierzchniowych jest odizolowanie chronionego metalu od środowiska oraz zastosowanie pokrycia z materiału, który posiada większą odporność np. na korozję, zużycie ścierne, czy własności adhezyjne, bądź nadanie lepszych własności warstwie wierzchniej chronionego metalu przez wprowadzenie zmiany składu chemicznego, a także struktury. W przypadku ochrony metali przed korozją przy pomocy powłok metalowych występuje jeszcze poza funkcją izolacji od środowiska bardzo ważny mechanizm ochrony ochrona elektrochemiczna. Polega ona na pokrywaniu metalu powłoką metalu o bardziej elektroujemnym potencjale, który sam ulegając korozji tworzy bardziej szczelne produkty korozji, które także wypełniają uszkodzenia powłoki nie dopuszczając do korozji chronionego podłoża. Taki rodzaj powłok nazywa się powłokami anodowymi, przykładem ich są powłoki cynku i aluminium na stali. Jeżeli zaś metal powłoki posiada potencjał elektrochemiczny wyższy niż posiada metal podłoża, to ten rodzaj powłoki nazywa się powłoką katodową, a jej ochrona sprowadza się do odizolowania chronionego podłoża od środowiska korozyjnego. Przykładem tych powłok są powłoki niklowe, chromowe, miedziane, złote itp. na stali. Ten rodzaj zabezpieczenia wymaga całkowitej szczelności powłok, w przeciwnym razie podłoże ulega silnej korozji wżerowej [1]. Zależnie od rodzaju materiału osadzanego na podłożu metalowym, powłoki ochronne dzieli się na dwie grupy: powłoki metalowe i powłoki niemetalowe. Powłoki metalowe wytwarza się najczęściej z: cynku, chromu, miedzi, niklu, aluminium, kadmu, cyny, stali nierdzewnej, metodą: galwaniczną, zanurzeniową, natryskową, przez platerowanie. Poza wymienionymi metodami klasycznymi stosuje się też warstwy powierzchniowe nowej generacji, jak implantacja jonów, techniki laserowe. Drugą główną grupę powłok ochronnych stanowią powłoki niemetalowe. Zalicza się do nich powłoki nieorganiczne i organiczne. Do powłok nieorganicznych należą pokrycia ceramiczne, emalierskie i konwersyjne, a do organicznych powłoki malarskie, z tworzyw sztucznych oraz gumowe. Wszystkie powłoki ochronne powinny odpowiadać następującym podstawowym wymaganiom. Muszą być szczelne, nieprzepuszczalne, powinny posiadać dobrą przyczepność do podłoża i zdolność krycia powierzchni. W zależności od rodzaju zjawisk wykorzystywanych do wytwarzania warstw powierzchniowych, metody ich wytwarzania można ogólnie podzielić na 6 grup (rys.2). Rys.2 Metody wytwarzania warstw powierzchniowych [1]

4 Każda z danej grupy przynależnej do określonej metody wytwarzania warstwy powierzchniowej pozwala na uzyskanie określonego rodzaju warstwy powierzchniowej, o określonej grubości i przeznaczeniu, i dzieli się na szereg sposobów, przy czym te same sposoby mogą być zrealizowane przy wykorzystaniu różnych procesów [1]. POWŁOKI ELEKTROLITYCZNE (GALWANICZNE) Powłoki elektrolityczne nakłada się w procesach elektrolizy na podłoże przewodzące prąd elektryczny. Odpowiednio oczyszczone, odtłuszczone i pozbawione warstwy tlenków wyroby metalowe przeznaczone do nakładania powłok zanurzane są w roztworze elektrolitu zawierającego jony metalu powłokowego. W czasie przepływu prądu stałego przez elektrolit jony metalu przemieszczają się w kierunku pokrywanego podłoża (katody) i wydzielają na nim tworząc powłokę. Proces elektrolizy można prowadzić w roztworach elektrolitów zawierających proste jony osadzanych metali, jak i w roztworach zawierających związki kompleksowe ( zespolone), przy czym wydzielanie powłok z kąpieli jonów kompleksowych zachodzi przy znacznie obniżonych potencjałach katod. Podczas elektrolizy możliwe jest jednoczesne wydzielanie na katodzie dwóch lub więcej metali, które tworzą powłoki stopowe, np. przez jednoczesne osadzanie miedzi i cynku wytwarza się powłokę mosiężną. Na elektrodach poza procesami podstawowymi wydzielania i rozpuszczania metalu mogą zachodzić niepożądane procesy uboczne, na katodzie np. wydzielanie gazowego wodoru, co nie tylko powoduje zużycie części prądu i zmniejszenie wydajności procesu, ale inne szkodliwe skutki, jak np. kruchość wodorową pokrywanego metalu. W elektrolicie, który jest zazwyczaj roztworem wodnym, każdy kation metalu otoczony jest określoną liczbą cząsteczek (dipoli) wody. W pobliżu katody w tzw. warstwie dyfuzyjnej elektrolitu rozmieszczenie cząsteczek wody wokół kationów ulega deformacji. Przy samej powierzchni metalu istnieje tzw. warstwa podwójna, gdzie jony metalu uwalniają się od otaczających je cząsteczek wody, a następnie adsorbują się na katodzie i zobojętniają swe ładunki elektronami pobieranymi z katody. Powstające atomy metalu dyfundują po powierzchni katody do miejsca pozwalającego na wbudowanie ich do sieci krystalicznej. Proces elektrokrystalizacji przebiega w dwóch etapach [2]: - tworzenie zarodków krystalizacji; - rozrost zarodków i formowanie powłoki; Szybkość tworzenia zarodków i szybkość wzrostu kryształów decydują o budowie powłoki galwanicznej. Pożądane powłoki drobnoziarniste otrzymuje się przy względnie większej szybkości tworzenia zarodków niż szybkość wzrostu kryształów. Wielkość kryształów osadzanego metalu, ich orientacja i kształt wpływają na niektóre własności powłok. Wyróżnia się trzy zasadnicze typy struktur elektrolitycznie osadzanych powłok metalowych: a) struktura zorientowana podłożem, tzn. reprodukująca strukturę metalu podłoża. Tworzy się ona przy stosowaniu niskich gęstości prądu osadzania metalu i niewielkim udziale substancji inhibitujących, posiada wprawdzie zwartą, ale grubokrystaliczną budowę; b) struktura uwarunkowana polem elektrycznym. Tworzy się przy wyższych gęstościach prądu i zwiększeniu roli inhibitorów;

5 c) struktura anizotropowa. Tworzy się przy bardzo silnym inhibitowaniu procesów osadzania metali. Struktura powłoki ma postać dyspersyjną bez uprzywilejowanej orientacji; Pomiędzy wymienionymi typami struktur istnieją różne formy przejściowe, a także inne uzyskane w wyniku specyficznych warunków elektrolizy. W zależności od przeznaczenia wyróżnia się powłoki: - ochronne, zabezpieczające metal przed korozją, np. Zn na stali; - dekoracyjne lub ochronno dekoracyjne, poprawiające wygląd przedmiotu, bądź jednocześnie chroniące przed korozją, np. Ni na stali, czy wielowarstwowe Cu-Ni-Cr na stali; - techniczne, wytwarzane w celu nadania powierzchni metalu określonych własności fizycznych lub technologicznych, zwiększonej odporności na ścieranie, zmniejszonego współczynnika tarcia, podwyższonego przewodnictwa elektrycznego; Do ważniejszych wymagań stawianych powłokom galwanicznym należą: dobra przyczepność (adhezja) powłoki do podłoża; szczelność, czyli jak najmniejsza porowatość, co ma szczególne znaczenie dla powłok katodowych; drobnokrystaliczna struktura; odpowiednia, minimalna grubość dla danych warunków użytkowania; wygląd zewnętrzny, barwa, gładkość; Technologia nakładania powłok galwanicznych obejmuje: - przygotowanie powierzchni podłoża; - elektrolityczne nakładanie powłoki; - obróbkę wykańczającą; Powłoki galwaniczne wymagają bardzo starannego przygotowania powierzchni metalu podłoża do elektrolizy, tj. oczyszczenia mechanicznego, odtłuszczenia, trawienia oraz dotrawiania, przeprowadzonego bezpośrednio przed nałożeniem powłoki w celu usunięcia warstwy tlenków. Pomiędzy kolejnymi operacjami przygotowania przedmiotu należy stosować płukanie, aby uniknąć przenoszenia składników poszczególnych kąpieli. Przedmioty do pokrywania galwanicznego powinny być całkowicie wykończone pod względem obróbki mechanicznej posiadać odpowiednie wymiary i wymagany stopień gładkości powierzchni i krawędzi. Powłoki cynkowe [2] Cynk jako metal bardziej elektroujemny niż żelazo, tworzy na stali i żeliwie powłoki anodowe. W wilgotnym powietrzu powstające na powierzchni produkty korozji tworzą dość szczelną warstwę izolującą podłoże od środowiska. Istotną zaletą galwanicznych powłok cynkowych jest ich dobra przyczepność do podłoża, a jednocześnie większa plastyczność niż otrzymywanych innymi metodami. Bardzo dobrą odporność korozyjną galwanicznych powłok cynkowych można uzyskać przez wprowadzenie do kąpieli galwanicznej np. soli chromu i kobaltu, które wbudowują metaliczny kobalt i tlenek chromu do powłoki, podczas jej osadzania. Szczególnie duże ilości cynku stosuje się w przemyśle maszynowym i samochodowym do pokrywania taśm, blach, drutów stalowych i drobnych elementów. Cynkowane są też elementy wyposażenia samochodów, rowerów, urządzeń domowych, sprzętu elektrycznego. Blachy cynkowane galwanicznie używane są do wytwarzania wytłoczek nadwozi samochodowych i zbiorników paliwa. Przemysł samochodowy stosuje głównie blachy cynkowane jednostronnie, bowiem powlekane dwustronnie sprawiają trudności przy zgrzewaniu. Blachy powlekane jednostronnie są dobrze

6 zgrzewalne i jednocześnie malowanie ich nie pokrytej powierzchni, pozwala pozyskać lepszy efekt. Powłoki chromowe [2] Chrom jest metalem powszechnie stosowanym w galwanotechnice do pokryć dekoracyjno ochronnych z uwagi na nadawanie powierzchniom atrakcyjnego wyglądu trwałego lustrzanego połysku w warunkach atmosferycznych i znacznej odporności korozyjnej, wynikającej z własności pasywnych chromu. Jednocześnie bardzo wysoka twardość warstw chromu otrzymanego w odpowiednich warunkach (większa od twardości zahartowanych stali) jest wykorzystywana do pokryć technicznych. Przy chromowaniu stosuje się anody nierozpuszczalne, zazwyczaj ze stopu ołowiu z antymonem lub cyną. Anody chromowe są nieprzydatne, ponieważ wydajność ich rozpuszczania jest wielokrotnie wyższa niż wydajność procesu osadzania chromu na katodzie, co powodowałoby szybki, nadmierny wzrost stężenia jonów chromu w elektrolicie. Wydzielony elektrolitycznie chrom posiada wyjątkowo drobnokrystaliczną budowę. Powłoki ochronno dekoracyjne stosuje się do przedmiotów codziennego użytku, elementów aparatury, akcesoriów samochodowych. Przedmioty podlegające ścieraniu i pracujące w warunkach niedostatecznego smarowania, jak cylindry silników spalinowych, pierścienie tłokowe, sworznie zaworów poddaje się chromowaniu porowatemu. Na powierzchni powłoki chromowej występują pory, w których zbiera się smar ułatwiający poślizg współpracujących części. Wytworzenie warstwy chromu porowatego polega na dodatkowej obróbce anodowej przedmiotów chromowanych. Chrom rozpuszcza się w porach i szczelinach, które zwykle występują w warstwach chromowanych poszerza i pogłębia te pory. Powłoki niklowe [2] Galwaniczne powłoki niklowe należą do najszerzej stosowanych. Atrakcyjny wygląd powłok, duża odporność korozyjna, korzystne własności mechaniczne pozwalają na zastosowanie powłok w celach dekoracyjno ochronnych oraz technicznych. Nikiel osadzony bezpośrednio na stali ma charakter powłoki katodowej, a więc chroni podłoże tylko mechanicznie. Odporność niklu na działanie wielu środowisk korozyjnych wynika z jego własności pasywnych. Do niklowania stosuje się wiele kąpieli. Najszersze zastosowanie przemysłowe znalazły kąpiele typu Watta, oparte na trzech podstawowych składnikach: siarczanie niklawym, chlorku niklawym i kwasie borowym. Powłoki niklowe są podstawą wielowarstwowych powłok dekoracyjno ochronnych łącznie z chromem i miedzią. Służą do pokrywania akcesoriów samochodowych, armatury. Dzięki korzystnym własnościom mechanicznym niklowanie stosuje się do regeneracji zużytych części maszyn, galwanoplastycznego wytrawiania form wtryskowych. W przemyśle chemicznym grubymi powłokami niklowymi pokrywa się aparaturę chemiczną narażoną na działanie silnych zasad. Powłoki żelazne [2] Elektrolityczne powłoki żelazne są powłokami technicznymi nakładanymi w celach regeneracyjnych lub w celu wykorzystania ich zdolności pochłaniania i utrzymywania środków smarujących większych niż posiada np. chrom. Tę cechę powłok żelaznych wykorzystano m.in. do pokrywania aluminiowych tłoków silników spalinowych.

7 Elektrolityczne żelazowanie znalazło zastosowanie do celów specjalnych w galwanoplastyce, przy regeneracji części stalowych, do pokrywania miedzianych grotów lutowia, aby zapobiec wzajemnej dyfuzji lutowia i miedzi. Regeneracyjne powłoki żelaza powinny pracować w środowisku, które zwiększa ich małą odporność korozyjną, np. w olejach i smarach. Powłoki stopowe [2] Elektrolityczne powłoki stopowe posiadają bardzo specyficzne własności i są stosowane przy szczególnych wymaganiach, których nie mogą spełniać pojedyncze metale, jak np. duża twardość i żaroodporność lub specyficzne własności przeciwcierne czy mały opór przejścia, bądź duża odporność na ścieranie. Wyróżnić można: powłoki mosiężne i brązowe: do elementów hydrauliki siłowej, zabezpieczające przed agresywnością korozyjną środowiska kopalnianego (w górnictwie); powłoki wolfram kobalt i wolfram nikiel: do pokrywania styków w przekaźnikach i przełącznikach na dość duże moce; powłoki niklowo żelazowe: błyszczące powłoki stosuje się do pokrywania sprzętu sportowego, okuć meblowych, narzędzi, armatury łazienkowej, często z dodatkowym zabezpieczeniem powłoką chromową; Powłoki kompozytowe [2] Do regeneracji stalowych części maszyn stosuje się elektrochemiczne powłoki kompozytowe, które otrzymuje się z elektrolitów stosowanych do wydzielania metali, w których rozproszono cząstki proszków niemetalicznych: tlenków, azotków, węglików, siarczków bądź tworzyw sztucznych. Podczas elektrolitycznego osadzania metalu cząstki proszku wbudowują się w warstwę osadzanego na katodzie metalu. Obecność zawieszonych cząstek w roztworze pozwala na stosowanie większych gęstości prądu, przez co szybsze jest osadzanie powłok o żądanej grubości. Wynika to z faktu, że proszek oczyszcza powierzchnię katody i miesza warstwę elektrolitu przy katodzie, co powoduje zmniejszenie jego oporu elektrycznego. W celu zwiększenia odporności na ścieranie stosuje się powłoki kompozytowe z wtrąceniami twardych cząstek tlenków i węglików lub miękkich, samosmarujących cząstek siarczków, tworzyw sztucznych. Powłoki te mają unikalne właściwości techniczne, łączą w sobie własności samosmarne i antyprzyczepne. POWŁOKI ZANURZENIOWE (OGNIOWE) Powłoki metalowe nakładane metodą zanurzeniową są skutecznym, długotrwałym i ekonomicznym zabezpieczeniem, głównie stopów żelaza przed korozją elektrochemiczną, a w wypadku niektórych rodzajów powłok także przed korozją chemiczną. Nanoszenie powłok polega na zanurzaniu pokrywanego metalu w kąpieli z roztopionego metalu powłokowego, dlatego nakładany metal musi mieć stosunkowo niską temperaturę topnienia, a metal pokrywany nie może tracić swych właściwości fizycznych w tej temperaturze. Zależnie od rodzaju nakładanego metalu wyróżnia się: cynowanie, ołowiowanie, cynkowanie i aluminiowanie.

8 Najbardziej rozpowszechnioną technologią metalizacji zanurzeniowej jest cynkowanie. Nowsze technologie wykorzystują roztopione wieloskładnikowe stopy metali w procesie cynkowania bądź aluminiowania, co daje znacznie większą trwałość korozyjną powłok. Proces pokrywania zanurzeniowego przedmiotu pokrywanego składa się z kilku operacji [2]: 1. Obróbki wstępnej, która obejmuje usuwanie zanieczyszczeń, odtłuszczanie, trawienie i płukanie pokrywanych przedmiotów. Zgrubnie oczyszczone wyroby wkłada się do alkalicznej kąpieli odtłuszczającej, następnie do kąpieli trawiącej (rozcieńczony kwas mineralny rozpuszcza rdzę i zgorzelinę, aż do uzyskania czystej metalicznej powierzchni) i płucze strumieniem wody. 2. Topnikowanie polega na zanurzeniu pokrywanych przedmiotów w roztworze odpowiednich związków chemicznych lub ich mieszanin. Topnik oczyszcza powierzchnię pokrywanego metalu z pozostałości tlenków, zapobiega jej utlenianiu przed wprowadzeniem do stopionej kąpieli. Topniki ułatwiają zwilżenie pokrywanych powierzchni przez ciekły metal oraz wspomagają reakcję miedzy powierzchnią stali a roztopionym nakładanym metalem. Pokrywane przedmioty mogą być topnikowane metodą suchą lub mokrą. W metodzie suchej przygotowany wyrób zanurza się w wodnym roztworze topnika, następnie wyjmuje i suszy. W metodzie mokrej oczyszczony i wypłukany mokry przedmiot wprowadza się do kąpieli metalowej przez warstwę spienionego topnika pokrywającego powierzchnię tej kąpieli. 3. Nakładanie powłoki metalowej uzyskuje się przez zanurzenie lub przeciąganie półwyrobów przez stopiony metal. Warunkiem uformowania ciągłej powłoki zanurzeniowej jest dobra zwilżalność pokrywanego metalu, zależna zarówno od jego właściwości jak i metalu nakładanego oraz od stanu powlekanej powierzchni. W wyniku zwilżania na powierzchni ciała stałego powstaje cienka warstwa adsorpcyjna cieczy. Jeżeli średnica atomu ciekłego metalu jest zbliżona do średnicy atomu metalu podłoża to tworzy się warstwa faz międzymetalicznych w wyniku dyfuzji reaktywnej, stąd nazywa się tę warstwę dyfuzyjną. W odniesieniu do pokrywanych stopów żelaza warunek ten spełniają: Sn, Zn i Al. Wytworzenie warstwy dyfuzyjnej jest warunkiem dobrej i trwałej przyczepności powłoki do podłoża. Fazy międzymetaliczne są jednakże twarde i kruche, mogą być więc przyczyną łuszczenia się powłoki, jeżeli warstwa dyfuzyjna jest zbyt gruba. Grubość tej warstwy reguluje się przez czas zanurzenia w kąpieli. Na warstwie dyfuzyjnej krystalizuje po wyjęciu przedmiotu warstwa zewnętrzna o składzie kąpieli. Grubość tej warstwy reguluje się przez zgarnianie nadmiaru ciekłego metalu albo zdmuchiwanie strumieniem gazu, tuż powyżej miejsca wynurzania wyrobu z kąpieli. 4. Obróbka końcowa sprowadza się do wyrównania grubości nakładanej powłoki, wygładzenia jej oraz poprawy właściwości i wyglądu. Powłoki cynowe [2] Cynowanie zanurzeniowe ma na celu wytwarzanie powłok ochronnych na elementach urządzeń stosowanych w produkcji, transporcie i przechowywaniu żywności, powłok ułatwiających lutowanie w przemyśle elektrotechnicznym i elektronicznym oraz warstw wstępnych ułatwiających związanie takich powłok metalowych, które nie zwilżają czy nie tworzą faz międzymetalicznych z metalem podłoża, jak np. w wypadku cynowania panewek łożysk ślizgowych przed wylaniem stopu łożyskowego. Cynowaniu poddaje się stale, żeliwa, miedź i jej stopy.

9 Powłoki cynowe są gładkie i błyszczące, wyróżniają się dobrą lutownością. Cyna posiada dobrą odporność na działanie środowisk umiarkowanie agresywnych, w tym na długotrwałe oddziaływanie mleka i jego przetworów. Jest metalem nietoksycznym, stanowi powłokę katodową, w wypadku nieszczelności powłoki korozji wżerowej ulega więc podłoże. Odwrotnie jest w wypadku powłoki cynowej na miedzi, cyna będąc metalem mniej szlachetnym stanowi powłokę anodową. W zależności od rodzaju cynowanego elementu i wymaganego wykończenia powierzchni można cynować z pojedynczym lub podwójnym zanurzeniem przedmiotu w odrębnych kąpielach. Przy podwójnym zanurzaniu pierwsza kąpiel pokryta jest warstwą topnika, a druga o niższej temperaturze pokryta jest warstwą oleju. W ten sposób otrzymuje się grube powłoki o dużej gładkości powierzchni, w odróżnieniu od gorszej jakości powłok otrzymywanych przy jednorazowym zanurzaniu. Powłoki cynkowe [2] Cynkowanie zanurzeniowe, nazywane również cynkowaniem ogniowym stanowi podstawową technologię wytwarzania powłok cynkowych. Powłoki cynkowe skutecznie zabezpieczają powierzchnie drutów, blach i rur stalowych narażonych na działanie czynników atmosferycznych. Stosuje się je do ochrony elementów konstrukcji budowlanych, rur do przesyłania gorącej i zimnej wody. Cynk posiada niższy potencjał elektrochemiczny niż żelazo, dzięki czemu żelazo jest chronione przez samorzutnie przebiegającą reakcję utleniania cynku, co czyni tę powłokę anodową. W środowiskach wodnych działanie ochronne powłok cynkowych zależne jest od temperatury, a także od składu elektrolitu pokrywającego metal. Przy temperaturze środowiska około 70 0 C cynk może osiągnąć wyższy potencjał elektrochemiczny niż żelazo, stając się katodą, a żelazo anodą. Jest to zjawisko odwrócenia biegunowości, a sprzyja mu obecność węglanów, azotanów i rozpuszczonego tlenu w elektrolicie. W tych warunkach powłoka cynkowa pokrywa się produktem korozji w postaci tlenku cynku, który posiada wyższy potencjał elektrochemiczny niż cynk i żelazo, co czyni tę powłokę katodową. Przy braku szczelności tej powłoki występuje korozja wżerowa podłoża żelaza. Powłoki cynkowe są szczególnie przydatne w środowiskach słabo kwaśnych i słabo zasadowych. Powłoki aluminiowe [2] Aluminiowanie zanurzeniowe polega na wytwarzaniu powłok aluminiowych na elementach konstrukcji i urządzeń wykonanych ze stali, staliwa lub żeliwa, a narażonych na korozję w wodzie. Działanie ochronne powłok aluminiowych jest wywołane znaczną odpornością korozyjną spasywowanego aluminium. Spasywowana powłoka posiada potencjał elektrochemiczny zbliżony lub nieco wyższy niż potencjał żelaza w środowiskach wodnych, więc w wypadku utraty szczelności i odsłonięcia podłoża stalowego, powłoka nie zapewnia ochrony przed korozją wżerową stali. Jeżeli jednak nieciągłości występują w zewnętrznej warstwie powłoki, a odsłonięciu ulega tylko warstwa dyfuzyjna, która posiada wyższy potencjał elektrochemiczny niż aluminium, to utlenianiu (korozji) będzie ulegać zewnętrzna warstwa aluminium powłoki. W środowisku wody morskiej powłoki aluminiowe mają niższy potencjał elektrochemiczny niż podłoże stalowe, wskutek nietrwałości warstewki pasywnej w

10 roztworach chlorków. W tych warunkach powłoki aluminiowe stają się anodowymi względem podłoża, zapewniając lepszą ochronę stali w porównaniu z powłokami cynkowymi. LITERATURA [1] Powłoki ochronne. Skrypt uczelniany pod red. St. Tkaczyka. Gliwice 1994 [2] Głowacka M.: Powłoki. Skrypt Politechniki Gdańskiej. Cel ćwiczenia: Poznanie technologii wytwarzania, struktury, własności i zastosowania powłok elektrolitycznych i zanurzeniowych Wymagane zagadnienia teoretyczne: Podstawowe wiadomości dotyczące sposobów, celu, własności i zastosowania powłok elektrolitycznych i zanurzeniowych. Podczas ćwiczenia: Określić strukturę oraz własności: 1. Powłoki żelazowej na stali 2. Powłoki chromowej na stali 3. Powłoki niklowej na mosiądzu 4. Powłoki cynkowej na stali 5. Powłoki aluminiowej na stali

11 Wydział Mechaniczny, Katedra Inżynierii Materiałowej Laboratorium z: Technologii Materiałowych Temat: Powłoki elektrolityczne i zanurzeniowe Imię i Nazwisko Wydział, studia Grupa Ocena Data Podpis Powłoka/ podłoże Szkic struktury Opis struktury Uwagi Żelazowa (elektrolityczna) na stali Pow.... Traw.... Chromowa (elektrolityczna) na stali Pow.... Traw.... Niklowa (elektrolityczna) na mosiądzu Pow.... Traw.... Cynkowa (zanurzeniowa) na stali Pow.... Traw....

12 Aluminiowa (zanurzeniowa) na stali Pow.... Traw....

Kształtowanie powierzchniowe i nie tylko. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Kształtowanie powierzchniowe i nie tylko. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Kształtowanie powierzchniowe i nie tylko Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Warstwa wierzchnia to część materiału, z jednej strony ograniczona rzeczywistą powierzchnią ciała stałego, a z

Bardziej szczegółowo

INSTYTUT INśYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA

INSTYTUT INśYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA INSTYTUT INśYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM KOROZJI ĆWICZENIE NR 5 TECHNOLOGIE NANOSZENIA POWŁOK GALWANICZNYCH Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA WSTĘP TEORETYCZNY Powłoki konwersyjne tworzą się na powierzchni metalu

Bardziej szczegółowo

Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu. korozji

Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu. korozji Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu korozji KOROZJA to procesy stopniowego niszczenia materiałów, zachodzące między ich powierzchnią i otaczającym środowiskiem.

Bardziej szczegółowo

Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM

Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM

Bardziej szczegółowo

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA II Ćw. 6: ANODOWE

Bardziej szczegółowo

Wrocław dn. 18 listopada 2005 roku

Wrocław dn. 18 listopada 2005 roku Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 18 listopada 2005 roku Temat lekcji: Zjawisko korozji elektrochemicznej. Cel ogólny lekcji: Wprowadzenie

Bardziej szczegółowo

Nowa technologia - Cynkowanie termodyfuzyjne. Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie.

Nowa technologia - Cynkowanie termodyfuzyjne. Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie. Nowa technologia - termodyfuzyjne Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie.com Nowa technologia cynkowanie termodyfuzyjne Pragniemy zaprezentować nowe rozwiązanie

Bardziej szczegółowo

Zimny cynk składa się z miliardów cząsteczek tworzących szczelną powłokę, które pokrywają powierzchnię w całości (zachowuje się podobnie jak piasek). Z tego powodu pokrycie zimnego cynku jest zawsze elastyczne

Bardziej szczegółowo

Cynkowanie ogniowe chroni stal przed korozją. Warunki elementu konstrukcji

Cynkowanie ogniowe chroni stal przed korozją. Warunki elementu konstrukcji Ś ą Część 1 str. 1/ 9 Cynkowanie ogniowe chroni stal przed korozją Skuteczność ochrony antykorozyjnej oraz czas trwania tej ochrony zaleŝą od róŝnych czynników Warunki środowiskowe Wilgotność Zawartość

Bardziej szczegółowo

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych Spoiwa krzemianowe Kompozyty krzemianowe (silikatowe) kity, zaprawy, farby szkło wodne Na 2 SiO 3 + 2H 2 O H 2 SiO 3 +

Bardziej szczegółowo

Technologie Materiałowe II Spajanie materiałów

Technologie Materiałowe II Spajanie materiałów KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Spajanie materiałów Wykład 12 Lutowanie miękkie (SOLDERING) i twarde (BRAZING) dr inż. Dariusz Fydrych Kierunek

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Metale nieżelazne - miedź i jej stopy

Metale nieżelazne - miedź i jej stopy Metale nieżelazne - miedź i jej stopy Miedź jest doskonałym przewodnikiem elektryczności, ustępuje jedynie srebru. Z tego powodu miedź znalazła duże zastosowanie w elektrotechnice na przewody. Miedź charakteryzuje

Bardziej szczegółowo

TECHNOLOGIE ZABEZPIECZANIA POWIERZCHNI Technologies for protecting the surface Kod przedmiotu: IM.D1F.45

TECHNOLOGIE ZABEZPIECZANIA POWIERZCHNI Technologies for protecting the surface Kod przedmiotu: IM.D1F.45 Nazwa przedmiotu: Kierunek: Inżynieria Materiałowa Rodzaj przedmiotu: Kierunkowy do wyboru Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ GALWANOTECHNIKA WSTĘP Galwanotechnika jest działem elektrochemii zajmującym się osadzaniem na powierzchni przedmiotów metali z roztworów. Stosowane w praktyce powłoki galwaniczne z punktu widzenia ich

Bardziej szczegółowo

PL 213904 B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji

PL 213904 B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji PL 213904 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213904 (13) B1 (21) Numer zgłoszenia: 390004 (51) Int.Cl. C25D 3/12 (2006.01) C25D 15/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z MATERIAŁÓW KONSTRUKCYJNYCH I EKSPLOATACYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z MATERIAŁÓW KONSTRUKCYJNYCH I EKSPLOATACYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z MATERIAŁÓW KONSTRUKCYJNYCH I EKSPLOATACYJNYCH MATERIAŁY REGENERACYJNE Opracował: Dr inż.

Bardziej szczegółowo

Ć W I C Z E N I E 9 GALWANICZNE POWŁOKI NIKLOWE

Ć W I C Z E N I E 9 GALWANICZNE POWŁOKI NIKLOWE Ć W I C Z E N I E 9 GALWANICZNE POWŁOKI NIKLOWE WPROWADZENIE Jednym z najczęściej stosowanych sposobów modyfikacji powierzchni wyrobów metalowych jest nakładanie powłok metalowych. W zależności od przeznaczenia

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

OCHRONA PRZED KOROZJĄ

OCHRONA PRZED KOROZJĄ OCHRONA PRZED KOROZJĄ Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz, mgr Magdalena Bisztyga W przypadku większości materiałów nie jest możliwe całkowite usunięcie korozji, stąd też

Bardziej szczegółowo

Alternatywa dla chromu technicznego

Alternatywa dla chromu technicznego Alternatywa dla chromu technicznego Czym jest chromowanie techniczne? Czym jest chromowanie techniczne? Proces galwaniczny polegający na nakładaniu warstwy chromu Przebiega w kąpielach siarczanowych mieszaninie

Bardziej szczegółowo

NORMALIZACJA W DZIEDZINIE POWŁOK GALWANICZNYCH I METOD ICH BADAŃ

NORMALIZACJA W DZIEDZINIE POWŁOK GALWANICZNYCH I METOD ICH BADAŃ NORMALIZACJA W DZIEDZINIE POWŁOK GALWANICZNYCH I METOD ICH BADAŃ Normalizacja w dziedzinie galwanotechniki obejmuje: - klasyfikację i terminologię (pojęcia, symbole); - wymagania dotyczące właściwości

Bardziej szczegółowo

ZincTape AKTYWNE ZABEZPIECZENIA ANTYKOROZYJNE

ZincTape AKTYWNE ZABEZPIECZENIA ANTYKOROZYJNE ZincTape ZincTape została zaprojektowana do pokrywania powierzchni żelaza, stali, aluminium i metali lekkich, w celu ich ochrony przed korozją. Ochronę tę uzyskuje się poprzez nałożenie taśmy na powierzchnię,

Bardziej szczegółowo

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA Część I Ćw.

Bardziej szczegółowo

PL B1. Politechnika Świętokrzyska,Kielce,PL BUP 10/08. Wojciech Depczyński,Jasło,PL Norbert Radek,Górno,PL

PL B1. Politechnika Świętokrzyska,Kielce,PL BUP 10/08. Wojciech Depczyński,Jasło,PL Norbert Radek,Górno,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203009 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380946 (22) Data zgłoszenia: 30.10.2006 (51) Int.Cl. C23C 26/02 (2006.01)

Bardziej szczegółowo

PROCESY ZACHODZĄCE PODCZAS OBRÓBKI CIEPLNO-CHEMICZNEJ

PROCESY ZACHODZĄCE PODCZAS OBRÓBKI CIEPLNO-CHEMICZNEJ PROCESY ZACHODZĄCE PODCZAS OBRÓBKI CIEPLNO-CHEMICZNEJ nawęglanie nawęglanie w środowiskach stałych, ciekłych, gazowych nawęglanie próżniowe nawęglanie jonizacyjne azotowanie cyjanowanie aluminiowanie chromowanie

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/

Bardziej szczegółowo

C/Bizkargi, 6 Pol. Ind. Sarrikola E LARRABETZU Bizkaia - SPAIN

C/Bizkargi, 6 Pol. Ind. Sarrikola E LARRABETZU Bizkaia - SPAIN Mosiądz Skład chemiczny Oznaczenia Skład chemiczny w % (mm) EN Symboliczne Numeryczne Cu min. Cu maks. Al maks. Fe maks. Ni maks. Pb min. Pb maks. Sn maks. Zn min. Inne, całkowita maks. CuZn10 CW501L EN

Bardziej szczegółowo

ĆWICZENIE 11 CHEMICZNE BARWIENIE METALI I STOPÓW

ĆWICZENIE 11 CHEMICZNE BARWIENIE METALI I STOPÓW ĆWICZENIE 11 CHEMICZNE BARWIENIE METALI I STOPÓW WPROWADZENIE Jednym ze sposobów obróbki powierzchni metali i ich stopów jest barwienie. Proces ten prowadzi się w celach dekoracyjnych, nadania patyny lub

Bardziej szczegółowo

Technologie powierzchniowe. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie powierzchniowe. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie powierzchniowe Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Warstwa wierzchnia to część materiału, z jednej strony ograniczona rzeczywistą powierzchnią ciała stałego, a z drugiej materiałem

Bardziej szczegółowo

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203790 (13) B1 (21) Numer zgłoszenia: 366689 (51) Int.Cl. C25D 5/18 (2006.01) C25D 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Zabezpieczanie żelaza przed korozją pokryciami. galwanicznymi.

Zabezpieczanie żelaza przed korozją pokryciami. galwanicznymi. 1 Zabezpieczanie żelaza przed korozją pokryciami galwanicznymi. Czas trwania zajęć: 90 minut Pojęcia kluczowe: - galwanizacja, - miedziowanie. Hipoteza sformułowana przez uczniów: 1. Można zabezpieczyć

Bardziej szczegółowo

Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI

Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI WPROWADZENIE Osady miedzi otrzymywane na drodze katodowego osadzania z kwaśnych roztworów siarczanowych mogą charakteryzować

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

43 edycja SIM Paulina Koszla

43 edycja SIM Paulina Koszla 43 edycja SIM 2015 Paulina Koszla Plan prezentacji O konferencji Zaprezentowane artykuły Inne artykuły Do udziału w konferencji zaprasza się młodych doktorów, asystentów i doktorantów z kierunków: Inżynieria

Bardziej szczegółowo

POWŁOKI GALWANICZNE. Wprowadzenie

POWŁOKI GALWANICZNE. Wprowadzenie POWŁOKI GALWANICZNE Celem ćwiczenia jest praktyczne zapoznanie się z przebiegiem elektrolitycznego niklowania, określenie wydajności katodowej tego procesu oraz zbadanie wpływu niektórych parametrów na

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 BADANIA ODPORNOŚCI NA KOROZJĘ ELEKTROCHEMICZNĄ SYSTEMÓW POWŁOKOWYCH 1. WSTĘP TEORETYCZNY Odporność na korozję

Bardziej szczegółowo

WYŁĄCZNY DYSTRYBUTOR NA TERENIE RP. Intrapol II Sp. z o.o. Żywiec, ul. Ks.Pr. Słonki 3c

WYŁĄCZNY DYSTRYBUTOR NA TERENIE RP. Intrapol II Sp. z o.o. Żywiec, ul. Ks.Pr. Słonki 3c PRODUCENT VMP Research & Production Holding JSC (VMP Holding) Ekaterinburg,Russia WYŁĄCZNY DYSTRYBUTOR NA TERENIE RP Intrapol II Sp. z o.o. Żywiec, ul. Ks.Pr. Słonki 3c Antykorozja elementów stalowych

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

TEMAT 11: CZYNNIKI NISZCZĄCE PODŁOŻA I POWŁOKI MALARSKIE

TEMAT 11: CZYNNIKI NISZCZĄCE PODŁOŻA I POWŁOKI MALARSKIE TEMAT 11: CZYNNIKI NISZCZĄCE PODŁOŻA I POWŁOKI MALARSKIE 1 CZYNNIKAMI, KTÓRE OBNIŻAJĄ WARTOŚĆ LUB NISZCZĄ PODŁOŻE I POWŁOKI MALARSKIE, SĄ ODDZIAŁYWANIA: - FIZYCZNE: ściskanie, rozciąganie, zginanie, ścieranie,

Bardziej szczegółowo

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych Honorata Kazimierczak Promotor: Dr hab. Piotr Ozga prof. PAN Warstwy ochronne z cynku najtańsze

Bardziej szczegółowo

CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE).

CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE). Temat 2: CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE). Wykład 3h 1) Przyczyny zużycia powierzchni wyrobów (tarcie, zmęczenie, korozja). 2) Ścieranie (charakterystyka

Bardziej szczegółowo

Właściwości niklu chemicznego

Właściwości niklu chemicznego Nikiel chemiczny Właściwości niklu chemicznego DuŜa twardość powłoki Wysoka odporność na ścieranie Równomierne rozłoŝenie powłoki na detalu (bardzo waŝne przy detalach o skomplikowanym kształcie) Odporny

Bardziej szczegółowo

RHODUNA Diamond Bright Rodowanie błyszcząco-białe

RHODUNA Diamond Bright Rodowanie błyszcząco-białe Opis technologiczny RHODUNA Diamond Bright Rodowanie błyszcząco-białe RHODUNA Diamond Bright to proces tworzący jasne białe niezwykle błyszczące powłoki z nieosiągalnym wcześniej połyskiem. Charakteryzuje

Bardziej szczegółowo

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4 Zadanie: 1 Do niebieskiego, wodnego roztworu soli miedzi wrzucono żelazny gwóźdź i odstawiono na pewien czas. Opisz zmiany zachodzące w wyglądzie: roztworu żelaznego gwoździa Zadanie 2. Przeprowadzono

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Elektrochemia - szereg elektrochemiczny metali. Zadania

Elektrochemia - szereg elektrochemiczny metali. Zadania Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości

Bardziej szczegółowo

KOROZJA. KOROZJA: Proces niszczenia materiałów spowodowany warunkami zewnętrznymi.

KOROZJA. KOROZJA: Proces niszczenia materiałów spowodowany warunkami zewnętrznymi. 1 KOROZJA KOROZJA: Proces niszczenia materiałów spowodowany warunkami zewnętrznymi. Korozja metali i stopów, korozja materiałów budowlanych (np. betonów), tworzyw sztucznych. KOROZJA Elektrochemiczna atmosferyczna

Bardziej szczegółowo

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych.

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych. Katedra Mechaniki i Inżynierii Materiałowej Badania elektrochemiczne. Analiza krzywych potencjodynamicznych. mgr inż. Anna Zięty promotor: dr hab. inż. Jerzy Detyna, prof. nadzw. Pwr Wrocław, dn. 25.11.2015r.

Bardziej szczegółowo

Korozja elektromechaniczna. Powstaje na skutek działania krótko zwartych ogniw na styku metalu z elektrolitem. Ogniwa te powstają na skutek

Korozja elektromechaniczna. Powstaje na skutek działania krótko zwartych ogniw na styku metalu z elektrolitem. Ogniwa te powstają na skutek Korozją nazywa się stopniowe niszczenie tworzywa pod wpływem chemicznego oddziaływania środowiska. W przypadku metali rozróżnia się korozję chemiczną i elektrochemiczną. Korozja chemiczna jest spowodowana

Bardziej szczegółowo

OCHRONA PRZED KOROZJĄ

OCHRONA PRZED KOROZJĄ OCHRONA PRZED KOROZJĄ Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz, mgr Magdalena Bisztyga, dr inż. Zbigniew Szklarz W przypadku większości materiałów nie jest możliwe całkowite

Bardziej szczegółowo

PL B1. Sposób lutowania beztopnikowego miedzi ze stalami lutami twardymi zawierającymi fosfor. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

PL B1. Sposób lutowania beztopnikowego miedzi ze stalami lutami twardymi zawierającymi fosfor. POLITECHNIKA WROCŁAWSKA, Wrocław, PL PL 215756 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215756 (13) B1 (21) Numer zgłoszenia: 386907 (51) Int.Cl. B23K 1/20 (2006.01) B23K 1/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA)

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) ISO 9001:2008, ISO/TS 16949:2002 ISO 14001:2004, PN-N-18001:2004 PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) *) PVD - PHYSICAL VAPOUR DEPOSITION OSADZANIE

Bardziej szczegółowo

Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej

Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 9 Temat: Obróbki cieplno-chemiczne i powierzchniowe Łódź 2010 1 1. Wstęp teoretyczny

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego: RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2610371 (96) Data i numer zgłoszenia patentu europejskiego: 27.12.2012 12460097.4 (13) (51) T3 Int.Cl. C25D 3/56 (2006.01)

Bardziej szczegółowo

Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1

Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1 Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1 L. A. Dobrzański*, K. Labisz*, J. Konieczny**, J. Duszczyk*** * Zakład Technologii Procesów Materiałowych

Bardziej szczegółowo

KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA. Część II DEPOLARYZACJA TLENOWA. Ćw. 6

KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA. Część II DEPOLARYZACJA TLENOWA. Ćw. 6 KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA Część II DEPOLARYZACJA TLENOWA Ćw. 6 Akademia Górniczo-Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii Ciała tałego Korozja kontaktowa depolaryzacja

Bardziej szczegółowo

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 B23P 17/00 F16C 33/12

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 B23P 17/00 F16C 33/12 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 187627 (13) B1 (21) Numer zgłoszenia: 330103 (22) Data zgłoszenia: 04.12.1998 (51) IntCl7: C22C 13/00 B23P

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Specjalistyczna pompa do zastosowania

Specjalistyczna pompa do zastosowania Specjalistyczna pompa do zastosowania Wiemy jak radzić sobie z cieczami Tapflo zaopatruje przemysł obróbki powierzchniowej w pompy od ponad 25 lat. Posiadamy wiedzę jak dobierać odpowiednie pompy i filtry

Bardziej szczegółowo

Chłodnice CuproBraze to nasza specjalność

Chłodnice CuproBraze to nasza specjalność Chłodnice CuproBraze to nasza specjalność Dlaczego technologia CuproBraze jest doskonałym wyborem? LUTOWANIE TWARDE 450 C LUTOWANIE MIĘKKIE 1000 C 800 C 600 C 400 C 200 C Topienie miedzi Topienie aluminium

Bardziej szczegółowo

CYNKOWANIE OGNIOWE JAKO JEDEN ZE SPOSOBÓW ZABEZPIECZENIA PRZED KOROZJĄ SPRZĘTU MEDYCZNEGO

CYNKOWANIE OGNIOWE JAKO JEDEN ZE SPOSOBÓW ZABEZPIECZENIA PRZED KOROZJĄ SPRZĘTU MEDYCZNEGO ktualne Problemy iomechaniki, nr 6/2012 169 Węgrzynkiewicz Sylwia, Hajduga Maciej, Sołek ariusz, Jędrzejczyk ariusz: Wydział udowy Maszyn i Informatyki, kademia Techniczno- Humanistyczna, ielsko- iała

Bardziej szczegółowo

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia Politechnika Poznańska Wydział Inżynierii Zarządzania Wprowadzenie do techniki tarcie ćwiczenia Model Charlesa Coulomb a (1785) Charles Coulomb (1736 1806) pierwszy pełny matematyczny opis, (tzw. elastyczne

Bardziej szczegółowo

MATERIAŁ ELWOM 25. Mikrostruktura kompozytu W-Cu25: ciemne obszary miedzi na tle jasnego szkieletu wolframowego; pow. 250x.

MATERIAŁ ELWOM 25. Mikrostruktura kompozytu W-Cu25: ciemne obszary miedzi na tle jasnego szkieletu wolframowego; pow. 250x. MATERIAŁ ELWOM 25.! ELWOM 25 jest dwufazowym materiałem kompozytowym wolfram-miedź, przeznaczonym do obróbki elektroerozyjnej węglików spiekanych. Kompozyt ten jest wykonany z drobnoziarnistego proszku

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

Stale niestopowe jakościowe Stale niestopowe specjalne

Stale niestopowe jakościowe Stale niestopowe specjalne Ćwiczenie 5 1. Wstęp. Do stali specjalnych zaliczane są m.in. stale o szczególnych własnościach fizycznych i chemicznych. Są to stale odporne na różne typy korozji: chemiczną, elektrochemiczną, gazową

Bardziej szczegółowo

LAF-Polska Bielawa 58-260, ul. Wolności 117 NIP: 882-152-92-20 REGON: 890704507 http://www.laf-polska.pl

LAF-Polska Bielawa 58-260, ul. Wolności 117 NIP: 882-152-92-20 REGON: 890704507 http://www.laf-polska.pl Podstawowe informacje o stali Stal jest stopem żelaza, węgla i innych pierwiastków stopowych o zawartości do 2,14 % węgla. W praktyce, jako stale oznacza się stopy, które najczęściej zawierają żelazo,

Bardziej szczegółowo

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA I Ćw. 5: POWŁOKI OCHRONNE NIKLOWE I MIEDZIOWE

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA I Ćw. 5: POWŁOKI OCHRONNE NIKLOWE I MIEDZIOWE Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Inżynierii Materiałowej i Ceramiki Katedra Fizykochemii i Modelowania Procesów Laboratorium Ochrony przed Korozją GALWANOTECHNIKA I Ćw. 5: POWŁOKI

Bardziej szczegółowo

SMAROWANIE PRZEKŁADNI

SMAROWANIE PRZEKŁADNI SMAROWANIE PRZEKŁADNI Dla zmniejszenia strat energii i oporów ruchu, ale również i zmniejszenia intensywności zużycia ściernego powierzchni trących, zabezpieczenia od zatarcia, korozji oraz lepszego odprowadzania

Bardziej szczegółowo

Metody wytwarzania elementów półprzewodnikowych

Metody wytwarzania elementów półprzewodnikowych Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie

Bardziej szczegółowo

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu.

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. STOPY ŻELAZA Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. Ze względu na bardzo dużą ilość stopów żelaza z węglem dla ułatwienia

Bardziej szczegółowo

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Nowoczesne metody metalurgii proszków Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Metal injection moulding (MIM)- formowanie wtryskowe Metoda ta pozwala na wytwarzanie

Bardziej szczegółowo

dr inż. Marek Matulewski

dr inż. Marek Matulewski PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW dr inż. Marek Matulewski KOROZJA Korozja - ogólna nazwa procesów niszczących mikrostrukturę danego materiału, prowadzących do jego rozpadu, a wywołanych wpływem

Bardziej szczegółowo

Schemat ogniwa:... Równanie reakcji:...

Schemat ogniwa:... Równanie reakcji:... Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat

Bardziej szczegółowo

BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ

BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ R. ROMANKIEWICZ, F. ROMANKIEWICZ Uniwersytet Zielonogórski ul. Licealna 9, 65-417 Zielona Góra 1. Wstęp Jednym

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Temat: Badania odporności korozyjnej złącza spawanego Cel ćwiczenia Zapoznanie się z mechanizmem korozji złącza spawanego i

Bardziej szczegółowo

AlfaFusion Technologia stosowana w produkcji płytowych wymienników ciepła

AlfaFusion Technologia stosowana w produkcji płytowych wymienników ciepła AlfaFusion Technologia stosowana w produkcji płytowych wymienników ciepła AlfaNova to płytowy wymiennik ciepła wyprodukowany w technologii AlfaFusion i wykonany ze stali kwasoodpornej. Urządzenie charakteryzuje

Bardziej szczegółowo

1. Otrzymywanie proszków metodą elektrolityczną

1. Otrzymywanie proszków metodą elektrolityczną 1. Otrzymywanie proszków metodą elektrolityczną Wśród metod fizykochemicznych metoda elektrolizy zajmuje drugie miejsce po redukcji w ogólnej produkcji proszków. W metodzie elektrolitycznej reduktorem

Bardziej szczegółowo

Daria Jóźwiak. OTRZYMYWANĄ METODĄ ZOL -śel W ROZTWORZE SZTUCZNEJ KRWI.

Daria Jóźwiak. OTRZYMYWANĄ METODĄ ZOL -śel W ROZTWORZE SZTUCZNEJ KRWI. WYśSZA SZKOŁA INśYNIERI DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Daria Jóźwiak Temat pracy: ODPORNOŚĆ KOROZYJNA STALI CHIRURGICZNEJ 316L MODYFIKOWANEJ POWŁOKĄ CERAMICZNĄ

Bardziej szczegółowo

Kierunek studiów: Mechanika i Budowa Maszyn semestr II, 2016/2017 Przedmiot: Podstawy Nauki o Materiałach II

Kierunek studiów: Mechanika i Budowa Maszyn semestr II, 2016/2017 Przedmiot: Podstawy Nauki o Materiałach II Kierunek studiów: Mechanika i Budowa Maszyn semestr II, 201/2017 plan zajęć dla grupy M1 11 (wtorek 8.30-10.00) grupa temat osoba prowadząca sala 1 28.02.2017 Zajęcia organizacyjne dr inż. Paweł Figiel

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

ZANIECZYSZCZENIA POCHODZĄCE Z INSTALACJI SIECI WEWNĘTRZNEJ

ZANIECZYSZCZENIA POCHODZĄCE Z INSTALACJI SIECI WEWNĘTRZNEJ ZANIECZYSZCZENIA POCHODZĄCE Z INSTALACJI SIECI WEWNĘTRZNEJ CHARAKTER RYZYKA ZWIĄZANEGO Z ZANIECZYSZCZENIEM W SIECI WEWNĘTRZNEJ Ryzyko wynikające z czynników konstrukcyjnych (np. materiały, projektowanie,

Bardziej szczegółowo

PL B1 AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, KRAKÓW, PL BUP 08/07

PL B1 AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, KRAKÓW, PL BUP 08/07 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205765 (13) B1 (21) Numer zgłoszenia: 377546 (51) Int.Cl. C25B 1/00 (2006.01) C01G 5/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data

Bardziej szczegółowo

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale stopowe, konstrukcyjne, narzędziowe i specjalne. Łódź 2010 1 S t r

Bardziej szczegółowo

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis Wykład I Zniszczenie materiałów w warunkach dynamicznych Jerzy Lis Treść wykładu: 1. Zmęczenie materiałów 2. Tarcie i jego skutki 3. Udar i próby udarności. 4. Zniszczenie balistyczne 5. Erozja cząstkami

Bardziej szczegółowo

www.puds.pl Praktyka obróbki stali nierdzewnych 12 czerwca 2007 INSTYTUT SPAWALNICTWA w Gliwicach Metody spawania stali nierdzewnych i ich wpływ na jakość spoin i powierzchni złączy spawanych dr inż..

Bardziej szczegółowo

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu

Bardziej szczegółowo

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Kompozyty Większość materiałów budowlanych to materiały złożone tzw. KOMPOZYTY składające się z co najmniej dwóch składników występujących

Bardziej szczegółowo

PLAZMOWE NATRYSKIWANIE POWŁOK

PLAZMOWE NATRYSKIWANIE POWŁOK PLAZMOWE NATRYSKIWANIE POWŁOK Od blisko 40 lat w Katedrze Pieców Przemysłowych i Ochrony Środowiska prowadzi się badania w zakresie wytwarzania i stosowania powłok natryskiwanych plazmowo dla potrzeb gospodarki:

Bardziej szczegółowo

U N I W E R S A L N A

U N I W E R S A L N A E M A L I A UNIWERSALNA S Z Y B K O S C H N Ą C A EMALIA UNIWERSALNA SZYBKOSCHNĄCA BEZBARWNA LAKIER MIEDZIANY EFEKT LUSTRZANY Dekoracyjny lakier uniwersalny o metalicznym połysku do stosowania na powierzchniach

Bardziej szczegółowo

Umicore Galvanotechnik GmbH. MIRALLOY Zastosowania

Umicore Galvanotechnik GmbH. MIRALLOY Zastosowania Umicore Galvanotechnik GmbH MIRALLOY Zastosowania Właściwości powłok MIRALLOY Właściwości funkcjonalne odporność na ścieranie dystrybucja metalu odporność na korozję twardość właściwości poślizgowe podatność

Bardziej szczegółowo

TYP 42 ZAKŁAD WYTWARZANIA ARTYKUŁÓW ŚCIERNYCH.

TYP 42 ZAKŁAD WYTWARZANIA ARTYKUŁÓW ŚCIERNYCH. 66 TYP 41 ŚCIERNICE płaskie do przecinania TYP 42 ŚCIERNICE z obniżonym środkiem do przecinania Ściernice typów 41 i 42 stanowią liczną i popularną grupę narzędzi ściernych uniwersalnych i specjalnych

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 MATERIAŁOZNAWSTWO Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 PODRĘCZNIKI Leszek A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo K. Prowans: Materiałoznawstwo

Bardziej szczegółowo