Elementy Modelowania Matematycznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy Modelowania Matematycznego"

Transkrypt

1 Elementy Modelowania Matematycznego Wykład 7 Modele Markova

2 Spis treści Wstęp Łańcuch i procesy Markova Przykłady procesów Markova

3 Wstęp Andrey Andreyevich Markov (14 czerwca czerwca 1922) wybitny rosyjski matematyk. Znany jest przede wszystkim ze swych prac na temat procesów stochastycznych, zwanych później łańcuchami Markova. On i jego młodszy brat Vladimir Andreevich Markov ( ) udowodnili tzw. Nierówność Markova.

4 Wstęp Procesy Markowa w reprezentacji dyskretnej lub ciągłej, jako wyodrębniona grupa procesów przypadkowych (losowych), są dziś najlepiej zbadaną dziedziną procesów losowych i znalazły zastosowanie w modelowaniu wielu zjawisk z życia codziennego

5 Wstęp Prognozowanie cen akcji giełdowych Niemal wszystkie akcje zmieniają swoje ceny codziennie, a duża ich część w sposób niemal ciągły. Wykresy cen przedstawiają, w zależności od nastawienia obserwatora, efekt równoważenia się popytu i podaży, dyskontowanie przyszłych zdarzeń, reakcje na wydarzenia historyczne, efekt manipulacji akcjami, wpływ kosmosu bądź też całkowicie przypadkowe ruchy Browna.

6 Wstęp Te bądź jeszcze inne przyczyny zmian cen usiłuje się wykorzystać w analizie historycznych przebiegów i próbie prognozowania przyszłego zachowania cen. Zachowanie poszczególnych akcji zapisane w postaci kolejnych cen i przekształcone do postaci graficznej to dla każdego inwestora wykres ceny. Bardzo podobne przebiegi i szeregi liczb są znane i używane w wielu dziedzinach nauki

7 Wstęp Jako że szeregi te opisują za pomocą kolejnych liczb zachowanie pewnego zjawiska w czasie, bardzo często określa się je mianem szeregów czasowych. Kolejne zdarzenia występujące w szeregach czasowych tworzą pewien proces. Tak więc to, co dla inwestora jest wykresem cen, dla specjalisty zajmującego się na przykład teorią informacji, jest graniczną interpretacją szeregu czasowego opisującego proces zmian cen.

8 Wstęp Proces stochastyczny jest to takie zjawisko (reprezentowane liczbowo przez szereg czasowy), w którym przyszła wartość opisująca stan zjawiska nie jest pewna (przyszłe liczby opisujące je mogą przyjmować różne wartości, przy czym żadna z nich nie pojawi się z prawdopodobieństwem równym 1).

9 Wstęp Klasycznymi przypadkami procesów stochastycznych są przyszłe wartości zmiennych opisujących pogodę temperatura, ciśnienia, kierunek bądź siła wiatru). Dobrym przykładem może być wypełnianie się niżu.

10 Wstęp Można nawet w pewien sposób oszacować drogę, którą się przesunie i czas potrzebny na podniesienie się ciśnienia wewnątrz niżu do wartości średniej. Nie da się tego jednak zrobić w sposób dokładny. Czyli mimo pewnych ściśle określonych ram zachowania, dokładne zachowanie nie jest znane. Podobnie jest ze zmianami cen na giełdzie. Jakkolwiek każdy silny spadek kiedyś musi się skończyć, nigdy nie mamy pewności kiedy to nastąpi.

11 Łańcuch Markowa Ciąg Markowa to taki proces stochastyczny, w którym określone są związki probabilistyczne przyszłych zdarzeń w zależności od wcześniej występujących.

12 Ciąg Markowa ciąg Markova pierwszego rzędu - jutrzejsze zachowanie zależy (w sensie statystycznym) tylko i wyłącznie od dzisiejszej zmiany ciąg Markova drugiego rzędu - prawdopodobieństwo jutrzejszego zachowania zależy od dzisiejszej i wczorajszej zmiany ciąg Markova zerowego rzędu - jutrzejsze zachowanie jest całkowicie niezależne od wcześniejszych notowań (bez względu jakie było zachowanie historyczne przyszłe zmiany będą określone takimi samymi związkami prawdopodobieństw); właśnie takie założenie jest wykorzystywane w analizie portfelowej czyli fakt, że przyszłość nie zależy od przeszłości może być w jakiś sposób wykorzystany w procesie inwestycyjnym.

13 Proces Markowa Proces Markowa bazuje wyłącznie na rozkładzie prawdopodobieństw warunkowych. Może się więc zdarzyć, że mamy do czynienia z deterministycznym procesem chaotycznym, w którym jutrzejsze zachowanie określone jest ścisłym wzorem, a mimo to proces będzie sprawiał wrażenie, że jest zerowego rzędu (to znaczy zupełnie nie zależy od przeszłości).

14 Proces Markowa Wynika to z faktu, że bardzo podobne, niemal identyczne zachowanie historyczne może skutkować zupełnie różnym zachowaniem w przyszłości. Tak więc mimo tego, że proces chaotyczny oznacza się istnieniem tak zwanej długoterminowej pamięci zachowania wykrycie tej zależności może być trudne bądź niemożliwe.

15 Proces Markowa Najważniejszym problemem w prognozowania cen jest brak stacjonarności procesu. Niestacjonarność to zjawisko, które jest źródłem większości niepowodzeń inwestorów giełdowych, próbujących wyznaczyć przyszłe ceny akcji na giełdzie.

16 Proces Markowa Proces stacjonarny to taki proces, w którym związki probabilistyczne są stałe i nie zależą od zmiennej niezależnej, czyli prawdopodobieństwo wystąpienia pewnej sytuacji nie zmienia się w miarę upływu czasu.

17 Proces Markowa Gdyby przyjąć, że zachowanie cen akcji jest procesem niestacjonarnym o nieznanej zmianie sposobu zachowania oznaczałoby to, że do prognozowania przyszłych cen potrzebna byłaby wiedza o przyszłym charakterze tego procesu, natomiast zupełnie nieprzydatna byłaby wiedza o wcześniejszym zachowaniu.

18 Proces Markowa W skrócie oznacza to, że wyłącznie osoby manipulujące rynkiem (przy założeniu, że jest to możliwe na większą skalę) mogłyby posiadać wiedzę jak zarobić na inwestycjach giełdowych.

19 Proces Markowa Należy rozróżnić niestacjonarność procesu od efektywności rynku. Rynek efektywny, jest skutkiem tego, że zmiany cen są procesem Markowa zerowego rzędu. Dodatkowo, charakteryzuje go tak zwana słaba stacjonarność, która cechuje się stałością średniej i wariancji. Czyli ostatecznie na rynku efektywnym ceny nie zależą od wcześniejszych. Natomiast w przypadku braku stacjonarności ceny zależą od poprzednich, lecz nie ma pewności, że wiemy w jaki sposób.

20 Proces Markowa W praktyce sprawa nie jest taka beznadziejna. Zmiany cen nie są procesem stacjonarnym, jednak zmienność zależności jest bardzo powolna. To znaczy system, który był dobry wczoraj będzie dobry jeszcze dzisiaj, a jutro będzie tylko trochę gorszy. Kiedyś oczywiście może utracić swoje właściwości. Ponadto można podejrzewać, że zmiany cen składają się z kilku (zapewne trzech) procesów o różnych charakterach. Bardzo prawdopodobne, że przynajmniej jeden z nich jest stacjonarny, czyli jego parametry ustalone w przeszłości będą w przyszłości takie same.

21 Proces Markowa Niech układ Ω może przyjmować stany 1, 2 - zbiór skończony lub przeliczalny i niech w pewnej jednostce czasu może przejść z jednego stanu do innego z pewnym prawdopodobieństwem, to prawdopodobieństwo warunkowe, że układ znajdujący się w chwili n-1 w stanie i przejdzie do stanu j w chwili n.

22 Proces Markowa

23 Łańcuch jednorodny Jeśli prawdopodobieństwo nie zależy od czasu, tzn.: to łańcuch Markova jest jednorodny, a macierz złożona z elementów to macierz przejścia. Mamy

24 Łańcuch jednorodny

25 Łańcuch Pochłaniający Łańcuch Markova nazywamy pochłaniającym, jeśli istnieje taki stan i, z którego nie można wyjść, czyli: Stan taki nazywamy stanem pochłaniającym (ang. absorbing state). Stan nie będący stanem pochłaniającym nazywamy stanem przejściowym (ang. transient state).

26 Postać kanoniczna łańcucha pochłaniającego

27 Łańcuch Markowa Łańcuch Markowa nazywamy ergodycznym, jeśli z dowolnego stanu można przejść do dowolnego innego (niekoniecznie w jednym kroku).

28 Procesy ergodyczne Centralnym zagadnieniem teorii procesów stochastycznych jest znalezienie rozkładu prawdopodobieństwa zmiennej losowej y(t) w pewnej chwili t na podstawie znajomości realizacji y(s) tej zmiennej losowej w pewnych innych chwilach s (na ogół chwila t odnosi się do przyszłości).

29 Procesy ergodyczne Jedną z podstawowych własności, dzięki którym można ocenić rozkład prawdopodobieństwa zmiennej losowej y(t) na podstawie obserwacji aktualnych przebiegów danego procesu stochastycznego, jest tzw. własność ergodyczności

30 Procesy ergodyczne Można powiedzieć, że proces stochastyczny jest ergodyczny, jeżeli prawdopodobieństwo zaobserwowania wartości y(t) należącej do jakiegoś zbioru A da się oszacować przez średni czas pobytu każdej realizacji w tym zbiorze podczas długiego czasu obserwacji

31 Procesy ergodyczne Tak więc w procesach stochastycznych ergodycznych można oszacować ich rozkład prawdopodobieństwa na podstawie obserwacji jednego przebiegu w dostatecznie długim czasie, czyli otrzymane wyniki są średnią po czasie.

32 Procesy ergodyczne Hipoteza ergodyczna Ewolucja klasycznego złożonego układu dynamicznego zachodzi z jednakowym prawdopodobieństwem przez wszystkie stany, które są dostępne z punktu początkowego i które podlegają ograniczeniom narzuconym przez zasadę zachowania energii.

33 Procesy Markowa Przykładem procesu niemarkovskiego może być np. proces zmian poziomu wody w rzece w pewnym ustalonym jej miejscu, gdzie informacja o tym, że w pewnej chwili t poziom wody wynosił y i bezpośrednio przedtem obserwowano np. tendencję obniżania się poziomu wody, pozwala na lepsze przewidywania niż sama informacja o tym, że w chwili t poziom wody wynosił y.

34 Procesy Markowa Przykłady procesów Markowa Proces emisji cząstek wypromieniowanych przez substancję radioaktywną. Ruch cząstki zawieszonej w cieczy tzw. ruch Browna. Proces zajmowania i zwalniania łączy w centrali telefonicznej. Dynamika kolejki w serwerach WWW.

35 Procesy Markowa

36 Procesy Markowa Pytanie: jakie jest prawdopodobieństwo, że po wykonaniu N kroków znajdziemy pijaka w położeniu x = ml? Niech po n krokach pijak będzie w położeniu x = ml, m <= N. Niech nr - liczba kroków w prawo; nl - liczba kroków w lewo. Mamy więc

37 Procesy Markowa

38 Procesy Markowa

39 Mysz w labiryncie Procesy Markowa

40 Procesy Markowa Mysz w labiryncie Mamy kilka możliwości: Kot zawsze siedzi w swojej komórce i czeka na ofiarę Kot może wchodzić tylko do pomieszczeń 1,2,3 i 5, gdyż wszystkie inne otwory są dla niego za małe; do każdego sąsiedniego dopuszczalnego pomieszczenia wchodzi z jednakowym prawdopodobieństwem To samo co powyżej, ale prawdopodobieństwo, że zostanie w swej komórce wynosi 1/2, a wchodzi do sąsiednich pomieszczeń z prawdopodobieństwem 1/4

41 Procesy Markowa Procesy gałązkowe (Galtona-Watsona) Procesy gałązkowe modelują rozwój populacji (jednopłciowej, rozmnażającej się przez podział, np. bakterii, ameb, monet czy innych mikroorganizmów). Zmienne losowe y(n) (przyjmujące nieujemne wartości) określają liczbę osobników w n-tym pokoleniu. Przyjmujemy zawsze, że jest jeden protoplasta rodu, czyli y(0) = 1. Zmienne losowe opisujące, ile dzieci ma każdy osobnik, są niezależne o jednakowym rozkładzie. Główne pytanie, jakie się pojawia, to: jakie są szanse, że dana populacja przeżyje?

42 Procesy Markowa

43 Procesy Markowa

44 Błądzenie losowe

45 Błądzenie losowe

46 Ruch Browna Proces stochastyczny B(t) nazywamy standardowym ruchem Browna (Brownian motion). Jest to jeden z ważniejszych modeli teoretycznych w rachunku prawdopodobieństwa. Nazwa pochodzi od dobrze znanego w fizyce procesu opisującego położenie cząstki w klasycznym ruchu Browna.

47 Ruch Browna Możemy go przedstawić w następującej postaci całkowej:

48 Ruch Browna

49 Ruch Browna Ruch Browna był po raz pierwszy wykorzystany do modelowania procesów finansowych przez Louisa Bacheliera, który w swojej pionierskiej pracy doktorskiej Thèorie de la spéculation, obronionej 29 marca 1900 r. w Paryżu, zaproponował pierwszy teoretyczny model procesu ceny akcji z paryskiej giełdy.

50 Przykład Czy możemy liczyć na kawę? Maszyna z kawą może być czynna (stan 0) lub zepsuta (stan 1). Załóżmy, że jeśli maszyna jest czynna w danym dniu, to prawdopodobieństwo zepsucia w dniu następnym jest d, a jeśli jest zepsuta w danym dniu, to prawdopodobieństwo jej naprawienia na dzień następny jest g. Jakie jest prawdopodobieństwo dostania kawy z maszyny?

51 Przykład maszyna jest czynna, wczoraj też była czynna: p(0, t n 0, t n -1) = 1 - d, maszyna jest nieczynna, wczoraj była czynna: p(1, t n 0, t n -1) = d, maszyna jest czynna, wczoraj była nieczynna: p(0, t n 1, t n -1) = g, maszyna jest nieczynna, wczoraj też była nieczynna: p(1, t n 1, t n -1) = 1 - g,

52 Przykład Dobra i dobrze serwisowana maszyna powinna mieć d bliskie 0 i g bliskie 1!) Prawdopodobieństwo dostania kawy z maszyny będzie zależało od proporcji czasu, gdy maszyna jest czynna, do całego czasu pomiaru.

53 Przykład Symulacja dla d=0.2 i g = 0.9 Zauważmy, że uśredniając po długim czasie, prawdopodobieństwo kupienia kawy stabilizuje się na poziomie 80%, praktycznie niezależnie od stanu maszyny w dniu początkowym.

54 Przykład Brawurowa gra Mamy 1 zł i chcemy wygrać 5 zł. Krupier oferuje nam grę, w której prawdopodobieństwo naszej wygranej wynosi p w każdej rundzie z wypłatą podwójnej stawki w razie wygranej oraz jej stratą w razie przegranej, przy czym stawki są w całkowitych wielokrotnościach złotówki.

55 Przykład Wybieramy następującą strategie brawurowa: w każdej grze stawiamy wszystko co mamy, jeśli ewentualna wygrana pozwoli osiągnąć cel (osiągnąć 5 zł), lub mniej niż cel. W przeciwnym razie, stawiamy tyle aby ewentualnie wygrać 5 zł. Jaka jest szansa wygrania w k lub mniejszej liczbie gier?

56 Przykład Ponumerujmy stany liczbą posiadanych przez nas złotówek. Zaczynamy grę od stanu nr 1. Wygrać grę znaczy przejść od stanu 1 do stanu 5. Stan 0 oznacza przegraną. Prawdopodobieństwo wygrania lub przegrania gry nie zależy od historii wygranych i przegranych w poprzednich grach własność Markowa jest zatem spełniona. Prawdopodobieństwo wygranej w stanie i nie zależy od czasu, wiec proces ten jest jednorodny w czasie.

57 Przykład

58 Przykład Interesują nas tylko ścieżki, które kończą się w stanie 5. Nazwiemy je istotnymi. Prawdopodobieństwo każdej ścieżki jest iloczynem prawdopodobieństw przejść jednokrotnych. Istotna ścieżka o długości 3 o prawdopodobieństwie p 3 S: (1) -> (2) -> (4) -> (5) Zatem prawdopodobieństwo wygrania w trzech grach wynosi p 3

59 Przykład Istotna ścieżka o długości 4 R: (1) -> (2) -> (3) -> (5) ma prawdopodobieństwo p 3 q. Zatem prawdopodobieństwo wygrania w 4 lub mniej grach wynosi p 3 (1+ q).

60 Przykład Nie ma istotnych ścieżek o długości 6. Istotna ścieżka o długości 7 ma jedna pętle L: (1) -> (2) -> (4) -> (3) -> (1), po czym następuje ścieżka S.

61 Przykład Prawdopodobieństwo pętli L wynosi =p 2 q 2, zatem prawdopodobieństwo dla ścieżki L*S wynosi q 3. Zatem prawdopodobieństwo wygrania w 7 lub mniej grach wynosi p 3 (1+ )+p 3 q.

62 Przykład Istnieje jedna ścieżka o długości 8: L*R, dla której prawdopodobieństwo wynosi p 3 q. Zatem prawdopodobieństwo wygrania w 8 lub mniej grach wynosi p 3 (1+q)(1+ ). Zauważmy ogólną prawidłowość, że wszystkie dłuższe ścieżki są typu L* *L*S lub L* *L*R. Ich prawdopodobieństwa przy n pętlach wynoszą n p 3 i n p 3 q.

63 Przykład Prawdopodobieństwo wygranej przy nieograniczonej liczbie prób wynosi

64 Koniec

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ

MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LII NR 1 (184) 2011 Marian Brzeziń ski Wojskowa Akademia Techniczna MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ STRESZCZENIE W artykule scharakteryzowano

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD?

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD? EWD co to jest? Metoda EWD to zestaw technik statystycznych pozwalających oszacować wkład szkoły w końcowe wyniki egzaminacyjne. Wkład ten nazywamy właśnie edukacyjną wartością dodaną. EWD jest egzaminacyjnym

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Modele rynku, kontrakty terminowe, spekulacje

Modele rynku, kontrakty terminowe, spekulacje Modele rynku, kontrakty terminowe, spekulacje Marcin Abram WFAIS UJ w Krakowie 9 marca 2009 Założenia modelu Cena rozpatrywanego obiektu zmienia się skokowo co czas δt. Bezwzględna wartość zmiany ceny

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Algorytmy i schematy blokowe

Algorytmy i schematy blokowe Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Wprowadzenie do szeregów czasowych i modelu ARIMA

Wprowadzenie do szeregów czasowych i modelu ARIMA Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

4.2 Rozgrzewka, czyli Centralne Twierdzenie Graniczne

4.2 Rozgrzewka, czyli Centralne Twierdzenie Graniczne 4.1 Wprowadzenie do modelowania Uwaga!!! Rzut monetą nie jest eksperymentem losowym. Znając warunki początkowe oraz wiedząc wszystko o otoczeniu, wyposażeni w znajomość zasad dynamiki jesteśmy w stanie

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Statystyczne sterowanie procesem

Statystyczne sterowanie procesem Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Zależność cech (wersja 1.01)

Zależność cech (wersja 1.01) KRZYSZTOF SZYMANEK Zależność cech (wersja 1.01) 1. Wprowadzenie Często na podstawie wiedzy, że jakiś przedmiot posiada określoną cechę A możemy wnioskować, że z całą pewnością posiada on też pewną inną

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

1 Genetykapopulacyjna

1 Genetykapopulacyjna 1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

2011-11-25. Jego rezultatem są wybory strategiczne i programy działań zmierzających do zapewnienia realizacji tych wyborów.

2011-11-25. Jego rezultatem są wybory strategiczne i programy działań zmierzających do zapewnienia realizacji tych wyborów. 2011-11-25 Planowanie działalności - istota Planowanie działalności stowarzyszenia jest sformalizowanym procesem podejmowania decyzji, w którym wypracowuje się pożądany obraz przyszłego stanu organizacji

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25.

(b) Oblicz zmianę zasobu kapitału, jeżeli na początku okresu zasób kapitału wynosi kolejno: 4, 9 oraz 25. Zadanie 1 W pewnej gospodarce funkcja produkcji może być opisana jako Y = AK 1/2 N 1/2, przy czym A oznacza poziom produktywności, K zasób kapitału, a N liczbę zatrudnionych. Stopa oszczędności s wynosi

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Podstawy analizy technicznej

Podstawy analizy technicznej Podstawy analizy technicznej Grzegorz Zalewski Kwiecień 2013 WPROWADZENIE DO ANALIZY TECZNICZNEJ Analiza techniczna jest taką gałęzią nauki, która jest bardziej gałęzią niż nauką. A. Kostolany ZAŁOŻENIA

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Zmienność. Co z niej wynika?

Zmienność. Co z niej wynika? Zmienność. Co z niej wynika? Dla inwestora bardzo ważnym aspektem systemu inwestycyjnego jest moment wejścia na rynek (moment dokonania transakcji) oraz moment wyjścia z rynku (moment zamknięcia pozycji).

Bardziej szczegółowo

Cena do wartości księgowej (C/WK, P/BV)

Cena do wartości księgowej (C/WK, P/BV) Cena do wartości księgowej (C/WK, P/BV) Wskaźnik cenadowartości księgowej (ang. price to book value ratio) jest bardzo popularnym w analizie fundamentalnej. Informuje on jaką cenę trzeba zapład za 1 złotówkę

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Model Marczuka przebiegu infekcji.

Model Marczuka przebiegu infekcji. Model Marczuka przebiegu infekcji. Karolina Szymaniuk 27 maja 2013 Karolina Szymaniuk () Model Marczuka przebiegu infekcji. 27 maja 2013 1 / 17 Substrat Związek chemiczny, który ulega przemianie w wyniku

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo