Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO"

Transkrypt

1 Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO.1. Względność ruchu. Układy współrzędnych.. Prędkość i przyspieszenie.3. Ruch prostoliniowy.4. Ruch krzywoliniowy 1

2 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania przyczyn, które ten ruch spowodowały (siła). Rys. Ruch- jedno z najczęściej obserwowanych zjawisk fizycznych POJĘCIA WSTĘPNE Ruch mechaniczny zmiana wzajemnego położenia ciała (punktu materialnego) w przestrzeni (lub jednych ich części względem drugich) pod wpływem czasu. Punkt materialny punkt geometryczny, w którym skupiona jest pewna masa, a którego rozmiary i kształty możemy w danym zagadnieniu pominąć. Układ odniesienia nieruchome w czasie obserwacji ciało lub zbiór ciał, względem którego opisujemy ruch innych ciała w przestrzeni. Układ współrzędnych związany z danym układem odniesienia zespół wzajemnie prostopadłych osi umożliwiający jednoznaczne określenie położenia punktu w przestrzeni. Równania ruchu opisują zmiany położenia ciała w przestrzeni w funkcji czasu. Trajektoria ruchu krzywa w przestrzeni, opisująca zmianę położenia ciała.

3 KINEMATYKA PUNKTU MATERIALNEGO Klasyfikacja ruchów: A. Ze względu na tor (trajektorię) ruchu: prostoliniowe (postępowe); krzywoliniowe (w tym: po okręgu); B. Ze względu na zależność położenia od czasu: jednostajne; jednostajnie zmienne (przyspieszone lub opóźnione); pozostałe (np. niejednostajnie zmienny itp.). 3

4 .1. WZGLĘDNOŚĆ RUCHU Względność ruchu ruch ciała jest pojęciem względnym; charakter ruchu ciała jest różny w zależności od układu odniesienia. Zasada niezależności ruchów (superpozycji) jeśli jakiś punkt bierze udział jednocześnie w kilku ruchach, to wypadkowe przesunięcie punktu równe jest sumie wektorowej przesunięć wykonanych przez ten punkt w tym samym czasie w każdym z tych ruchów oddzielnie. UKŁADY WSPÓŁRZĘDNYCH: (1) Trójwymiarowy kartezjański układ współrzędnych KINEMATYKA PUNKTU MATERIALNEGO Ruch cząstek emitowanych w zderzeniach jąder atomowych, trwał ułamki milionowych części sekundy. (CERN, Rap.Ann.1986) 4

5 KINEMATYKA PUNKTU MATERIALNEGO () 5

6 KINEMATYKA PUNKTU MATERIALNEGO (3) 6

7 KINEMATYKA PUNKTU MATERIALNEGO (4) 7

8 .. Prędkość i przyspieszenie w kartezjańskim trójwymiarowym układzie współrzędnych..1. PRĘDKOŚĆ Wektor prędkości, w każdym punkcie toru poruszającego się ciała, jego kierunek pokrywa się ze styczną do toru. Wektor położenia ciała w funkcji czasu: r t Przemieszczenie Otrzymujemy wielkość wektorową, która określa zarówno szybkość ruchu, jak i jego kierunek w danej chwili, czyli prędkość chwilową. Jednostką jest metr na sekundę. A B x( t) iˆ y( t) ˆj z( t) kˆ r r' r r x iˆ y (.1) (.) Prędkość średnia, zmiana wektora położenia r w przedziale czasu t : r x y z v śr iˆ ˆ j kˆ. (.3) t t t t t Prędkość chwilowa- przyrost czasu ( ) dąży do zera: ˆj z kˆ v v x y vz r dr dx dy dz (.4) lim iˆ ˆj kˆ v t 0 t dt dt dt dt dr v 1 dt m s (.5) 8

9 Prędkość c.d. Wartość wektora prędkości: v v (.6) v v v x y z Rys. Nachylenie krzywej x(t) w punkcie (w danej chwili) jest prędkością chwilową Szybkość- wskazuje prędkościomierz w samochodzie 9

10 Prędkość w innych układach współrzędnych 10

11 Przyspieszenie -tempo zmian prędkości m..1. PRZYSPIESZENIE (ang. acceleration, a, jedn. 1 ), to wielkość wektorowa, która s określa zmiany wektora prędkości w czasie poruszającego się ciała (zarówno wartości, jak i kierunku). Rys. źródło: 11

12 Przyspieszenie rodzaje m..1. PRZYSPIESZENIE (ang. acceleration, a, jedn. 1 ), to wielkość wektorowa, która s określa zmiany wektora prędkości w czasie poruszającego się ciała (zarówno wartości, jak i kierunku). PRZYSPIESZENIE ŚREDNIE, to zmiana wektora prędkości w przedziale czasu: v m (.7) a śr 1 t s PRZYSPIESZENIE CHWILOWE jest pochodną wektora prędkości względem czasu. a dr d( ) v dv dt d r lim t 0 t dt dt dt m 1 s Zauważamy, przyspieszenie jest też drugą pochodną wektora położenia względem czasu. (.8) styczna Składowe wektor przyspieszenia w układzie współrzędnych prostokątnych: tor a a ax y az dv dv x y dvz iˆ ˆj kˆ dt dt dt (.9) 1

13 Ruch ze stałym przyspieszeniem Przyspieszenie stałe (a=constant) Najczęściej będziemy się spotykać ze stałym przyspieszeniem (opóźnieniem). Gdy przyspieszenie chwilowe i średnie są równe, można zapisać: gdzie a Przekształcając powyższe, mamy : a : v0 oznaczaprędkoć wchwili począoczątkowej t0 śr v ( t ) v v t k k o v t 0 at 0 0, Rys. 1 a) Położenie cząstki poruszającej się ze stałym przyspieszeniem. b) Prędkość cząstki w ruchu przyspieszonym. c) Przyspieszenie cząstki w ruchu przyspieszonym jest stałe. Źródło: D. Holliday, R. Resnick, J. Walker, "Podstawy fizyki - tom I", PWN, Warszawa 005r. 13

14 Przyspieszenie ziemskie Spadek swobodny (rzut pionowy) Gdy rzucimy ciało w górę lub w dół i w jakiś sposób wyeliminujemy wpływ powietrza na jego ruch, to tak podczas wznoszenia jak i opadania ciało porusza się z przyspieszeniem, które nazywamy przyspieszeniem ziemskim (g). Nie zależy ono od własności przedmiotu (masa, kształt, itd.) gdy zaniedbamy wpływ powietrza. Wartość g zmienia się nieznacznie w zależności od szerokości geograficznej i wysokości nad poziomem morza. W zadaniach będziemy używać wartości g=9,81 m/s Odpowiadającej średniej szerokości geograficznej i poziomowi morza. Rys. źródło: D. Holliday, R. Resnick, J. Walker, "Podstawy fizyki, tom 14 I.

15 Ruch prostoliniowy Rzut pionowy w górę RÓWNANIA RUCHU: v 0 Dla ciała wyrzuconego z prędkością, t y v yt v y t 0 dy v0 dt gt gt (.10) (.11) (.1) (.13) Tablica- wyprowadzenie wzorów 15

16 Ruch prostoliniowy Rzut pionowy w dół Dla ciała wyrzuconego z wysokości H, prędkością v 0,: RÓWNANIA RUCHU: t y H v yt v y t 0 dy v0 dt gt gt (.14) (.15) Czas trwania rzutu. (.16) Wartość prędkości Końcowej. (.17) 16

17 Ruch prostoliniowy- jednowymiarowy Ruch prostoliniowy jednostajnie zmienny (a= const.) 17

18 Graficzne wyznaczanie drogi Ruch prostoliniowy- jednowymiarowy 18

19 Ruch w dwóch i trzech wymiarach Założenia: tor ruchu nie musi być linią prostą, ciągle interesuje nas sam ruch i jego zmiany a nie ich przyczyny, poruszające się ciało traktujemy jak obiekt punktowy, czyli obdarzony masą lecz bez rozmiaru Rys. Brachistochrona, źródło: Brachistochrona (krzywa najkrótszego czasu) jest to krzywa, po której czas staczania się ciała o masie m od punktu A do punktu B, pod wpływem stałej siły ciężkości, jest najkrótszy. Nazwa pochodzi od złożenia greckich słów brachistos - najkrótszy oraz chronos - czas. 19

20 .4.1. RZUT UKOŚNY ruch krzywoliniowy Rzut ukośny jest złożeniem dwóch ruchów : ruchu jednostajnego w kierunku poziomym - z prędkością: y v 0y v 0x v 0 z H g x v ox v 0 cos ruchu jednostajnie zmiennego w kierunku pionowym: -z prędkością początkową: v(t): t dx dt vx v0 x v y t dy v0 dt Ruch w dwóch i trzech wymiarach y v 0x Rys. Rzut ukośny: w czasie ruchu składowa pozioma prędkości gt (.0) (.1) g i przyspieszeniem : r(t): x t t v 0x 0 t y v yt v oy v 0 gt sin v0 x const; przyspieszenie a- takie samo w każdym punkcie toru a(t): RÓWNANIA RUCHU: Dla ciała wyrzuconego z prędkością v, pod do poziomu: 0 a a x y 0 g (.) (.3) (.18) (.19) 0

21 Tablica- wyznaczenie parametrów toru: Rzut ukośny c.d. Otrzymane parametry toru: Zasięg (Z) rzutu: Z x( t c ) v 0 sin g (.4) Maksymalna wysokość wzniesienia Hmax: v ( t y w) 0 (z warunku: ) H max y( t w ) v 0 sin g (.5) Wyznaczając z równania (3.6) czas t i podstawiając do równania (3.7), znajdujemy równanie toru: Równanie toru dla rzutu ukośnego- trajektoria ruchu: y x tg x v o g cos x (.6) Tablica- Przykłady 1

22 Analiza rzutu ukośnego-opór powietrza Opór powietrza Źródło: D. Holliday, R. Resnick, J. Walker, "Podstawy fizyki, tom I.

23 Stałe przyspieszenie w innym świetle *.4.1. Od przyspieszenia do równania ruchu Znając przyspieszenie (a =const.) ciała można znaleźć prędkość, przemieszczenie lub drogę tego ruchu. a dv dt Z definicji wynika : Całkując obie strony równania (.35), otrzymujemy: v v 0 dv dv adt t t 0 adt (.8) (.9) a ponieważ a= const, stąd: v v0 a( t t0) (.30) v( t) a t v W przypadku t 0 =0s, równość (.37) przyjmuje postać: 0 Z definicji prędkości chwilowej v dr dt, otrzymujemy: (.31) dr (.3) vdt Całkując obie strony równania (.39), otrzymujemy: (.33) Całka po czasie z wektora prędkości wyraża przemieszczenie ciała w przestrzeni. 3

24 Co wynika z całkowania stałego przyspieszenia? Przebytą drogę wyraża całka po czasie, ale z wartości bezwzględnej wektora prędkości: (.34) Jeśli prędkość nie zmienia się, to: (.35) Przykład ruch ze stałym przyspieszeniem. Dane są składowe [x, y, z] przyspieszenia, prędkości i położenia ciała w chwili t= 0s, Zakładając, że, zbadać ruch odpowiadając na pytania: 1. Jak zmienią się te wartości po czasie t?. Jaki będzie kształt toru? 4

25 .5. Ruch jednostajny po okręgu Ruch po okręgu - ruch cząstki odbywa się po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej, - choć wartość prędkości się nie zmienia, ruch cząstki jest ruchem przyspieszonym. Uzasadnienie. Przyspieszenie ( zmiana prędkości) kojarzy się ze Wzrostem lub zmniejszaniem się wartości bezwzględnej prędkości. Prędkość jest wektorem, a nie skalarem. Jeśli zmienia się choćby tylko jej kierunek, to ruch jest przyspieszony. (.36) Okres-czas potrzebny cząstce na jednokrotny Obieg zamkniętego toru. 5

26 Ruch po okręgu Wielkości kątowe wektor prędkości kątowej (.37) (.38) 6

27 Ruch po okręgu Wielkości kątowe przyspieszenie kątowe (.39) (.40) (.41) 7

28 Ruch po okręgu Przyspieszenie dośrodkowe (normalne) (.4) 8

29 Ruch po okręgu Zależności między wielkościami liniowymi a kątowymi w ruchu po okręgu Występowanie: 9

30 PODSTAWY DYNAMIKI. Kinematyka punktu materialnego: 3. DYNAMIKA PUNKTU MATERIALNEGO 3.1. Oddziaływania podstawowe 3.. Masa, pęd i siła 3.3. Zasady dynamiki Newtona 3.4. Siły kontaktowe i siły tarcia 3.4. Prawo powszechnego ciążenia ( ) Siła nośna równoważy się z wypadkowym wektorem siły odśrodkowej i ciężaru. Samolot znajduje się w stanie równowagi. 30

31 DYNAMIKA DYNAMIKA to dział mechaniki, w którym zajmiemy się przyczynami ruchu, badaniem związków między wzajemnymi oddziaływaniami ciał i zmianami ich ruchu. Rozważania ograniczymy do przypadku ciał poruszających się z małymi prędkościami ( w porównaniu z prędkością c), tzn. zajmiemy się mechaniką klasyczną. Żeby móc przewidzieć jaki będzie ruch ciała wywołany siłą na nie działającą, trzeba wiedzieć jakiego rodzaju jest to siła i skąd się bierze. 3.1 CZTERY PODSTAWOWE ODDZIAŁYWANIA (siły) Siła grawitacji -siła powszechnego ciążenia lub oddziaływanie grawitacyjne, dotyczy ciał posiadających masę (jest siłą powszechną), ma długi zasięg i najmniejsze względne natężenie. Powoduje spadanie ciał i rządzi ruchem ciał niebieskich. 31

32 ODDZIAŁYWANIA PODSTAWOWE c.d. Oddziaływanie elektromagnetyczne - są to siły działające między ładunkami elektrycznymi: Oddziaływanie to jest dalekozasięgowe. Siły międzyatomowe mają charakter elektromagnetyczny ponieważ atomy zawierają naładowane elektrony i protony. Większość sił z jakimi spotykamy się na co dzień np. tarcie, siła sprężystości jest wynikiem oddziaływania atomów, są to więc siły elektromagnetyczne. Oddziaływanie elektromagnetyczne ma wielokrotnie większe natężenie od grawitacyjnego; Przykładowe skutki: uderzenia piorunów, prąd elektryczny, struktura atomów, cząsteczek, ciał stałych. 3

33 ODDZIAŁYWANIA FUNDAMENTALNE c.d. Oddziaływanie jądrowe (silne) - występuje na poziomie jądra atomowego i cząstek elementarnych. Siła utrzymująca w całości jądra atomowe pomimo odpychania między protonami (ładunki dodatnie). Jądro atomowe Kwarki łączą się w protony i neutrony dzięki gluonom, które przenoszą oddziaływanie silne. Protony i neutrony noszą wspólną nazwę nukleony. Nukleony łączą się w jądra również przez oddziaływanie silne Oddziaływanie to ma bardzo krótki zasięg i największe względne natężenie. 33

34 ODDZIAŁYWANIA FUNDAMENTALNE c.d. Oddziaływanie słabe - temu oddziaływaniu podlegają wszystkie cząstki elementarne, w szczególności oddziaływanie to odpowiada za rozpad niektórych cząstek elementarnych. np. neutronu Oddziaływanie to jest również krótkozasięgowe. Tab. Cztery oddziaływania fundamentalne 34

35 DEFINICJE 3.. DYNAMIKA -podstawowe pojęcia Punkt materialny to ciało, którego rozmiary są do zaniedbania w danym zagadnieniu dynamiki. Zaniedbujemy również rozkład przestrzenny masy tego ciała. Masa m (1 kg) ojeżeli położymy na podłodze piłkę tenisową i kulę do kręgli i kopniemy je z jednakowa siłą, to? Bez doświadczenia wiesz jaki będzie wynik Ale co to właściwie jest masa ciała? o Zaproponowana metoda postępowania jest jednym ze sposobów definiowania masy. Opiera się ona na porównaniu nieznanej masy m x z wzorcem masy np. m 0 = 1 kg. x Hipoteza: mx a0 m 0 a 0 a x a x Stąd, masę m x definiujemy jako: Masa ciała to wielkość fizyczna, charakteryzująca ciało;miara liczebności. m x m 0 a a 0 x ( kg) (3.1) 35

36 DYNAMIKA -podstawowe pojęcia c.d. m ( kg ) s Pęd ciała definiujemy jako iloczyn jego masy i jego prędkości (wektorowej). Pęd p p mv (3.) Siła F (1N), Jest wielkością wektorową, która jest miarą oddziaływania innych ciał na dane ciało. Może być teraz zdefiniowana jako zmiana pędu w czasie. F dp dt (3.3) 36

37 SIŁA- równanie dynamiczne Jednostka siły. Podstawiając wyrażenie (? ) i wykonując różniczkowanie otrzymujemy: (3.4) Dla ciała o stałej masie m = const. Uzyskujemy równanie dynamiczne siły: dv F m ma dt (3.5) Jednostka siły m s ( 1N 1kg ) (3.6) Siła, która nadaje ciału wzorcowemu o masie 1 kg,przyspieszenie 1m/s, ma wartość 1 N 37

38 Dynamika punktu materialnego 3.3. ZASADY DYNAMIKI NEWTONA Sformułowane przez Isaaca Newtona w jego pracy Matematyczne zasady filozofii przyrody ( Phylosophiae Naturalis Principia Mathematica ) w 1687r. I. ZASADA ( inaczej zasada bezwładności) : Sir Isaac Newton, (4 January March 177) Jeżeli na ciało nie działają siły lub działające się równoważą (siła wypadkowa jest równa zeru), to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym. (3.7) 0 a 0 F wyp Uwagi: Układ odniesienia, w którym spełniona jest I zasada dynamiki, nazywamy układem inercjalnym. Każdy układ poruszający się względem układu inercjalnego z prędkością o stałej wartości i kierunku jest też układem inercjalnym. Stany spoczynku oraz ruchu jednostajnego, prostoliniowego są równoważne z punktu widzenia zasad dynamiki. 38

39 II. ZASADA DYNAMIKI NEWTONA II. ZASADA DYNAMIKI NEWTONA W POSTACI UOGÓLNIONEJ Zmiana pędu ciała jest proporcjonalna do siły wypadkowej działającej na to ciało i zachodzi wzdłuż kierunku jej działania: Dla ciał o stałej masie: dp F dt F wyp II. ZASADA DYNAMIKI NEWTONA d mv dt dp (3.8) dt dv m dt ma a, stąd: F wyp m (3.9) (3.10) Jeżeli na ciało działa stała, niezrównoważona siła wypadkowa F wyp,to ciało to porusza się ruchem jednostajnie przyspieszonym z przyspieszeniem proporcjonalnym do tej siły, a odwrotnie proporcjonalnym do masy miary bezwładności tego ciała. 39

40 III. ZASADA DYNAMIKI NEWTONA III. ZASADA DYNAMIKI NEWTONA Gdy dwa ciała oddziałują wzajemnie, to siła wywierana przez ciało drugie na pierwsze jest równa i przeciwnie skierowana do siły, jaką ciało pierwsze działa na drugie ciało; F AB F BA (3.11) Te siły oddziaływania między ciałami nazywane są siłami reakcji (albo: siłami oddziaływania). Uwaga: Siły reakcji działają na INNE ciała, więc siły wzajemnego oddziaływania nie równoważą się! 40

41 Masa a ciężar ciała Dynamika punktu materialnego 41

42 Siły kontaktowe: 3.4. SIŁY KONTAKTOWE I SIŁY TARCIA. Gdy dwa ciała są dociskane do siebie, występują miedzy nimi siły kontaktowe, których źródłem jest siła odpychająca między atomami obu ciał. Siła F jest przyłożona do klocka o masie m 1 ale nadaje przyspieszenie a obu klockom, stąd: (3.1) Siła kontaktowa F k z jaką klocek o masie m 1 działa na klocek o masie m nadaje przyspieszenie klockowi m. Ponieważ klocek m porusza się z przyspieszeniem a, więc siła kontaktowa wynosi : F k m a (3.13) Oczywiście, zgodnie z III zasadą dynamiki Newtona klocek o masie m działa na klocek o masie m 1 siłą reakcji -F k. 4

43 Podstawy dynamiki TARCIE Siły kontaktowe, o których mówiliśmy są normalne (prostopadłe) do powierzchni. Istnieje jednak składowa siły kontaktowej leżąca w płaszczyźnie powierzchni. F N Jeżeli ciało pchniemy wzdłuż stołu to po pewnym czasie ciało zatrzyma się. Z II z. d. Newtona wiemy, że jeżeli ciało porusza się z przyspieszeniem (opóźnieniem) to musi na nie działać siła. Tę siłę, która przeciwstawia się ruchowi nazywamy siłą tarcia. Siła tarcia występuje w konsekwencji istnienia sił kontaktowych. Jest prostopadła do normalnej do powierzchni siły nacisku i może istnieć nawet wówczas, gdy powierzchnie są nieruchome względem siebie. Współczynniki tarcia statycznego i kinetycznego: Tablica- rozwiązywanie zadań. s, k F t s, k F N siła tarcia (3.14) siła nacisku ciała na drugie ciało 43

44 Podstawy dynamiki 3.5. Prawo powszechnego ciążenia W roku 1665, 3-leni Isaac Newton dokonał wielkiego odkrycia w fizyce- spadanie ciał. Skoro istnieje siła przyciągania pomiędzy dowolnym ciałem i Ziemią, to musi istnieć siła między każdymi dwoma masami m 1 i m. Skoro siła jest proporcjonalna do masy ciała to musi być proporcjonalna do każdej z mas m 1 i m oddzielnie czyli: F m 1 m Wykazał, że siła utrzymująca księżyc na orbicie to ta sama siła, która sprawia, że jabłko spada z drzewa na Ziemię. Każde ciało we Wszechświecie przyciąga każde inne. Tę skłonność zbliżania się ciał do siebie nazwał ciążeniem (grawitacją). F m1m ~ r 44

45 Prawo powszechnego ciążenia Ostatecznie przyciąganie ciał opisuje prawo powszechnego ciążenia, które mówi każda cząstka przyciąga każdą inną cząstkę siłą ciężkości (siłą grawitacji) o wartości F G m m 1 r (3.15) W równaniu tym m1 i m, to masy cząstek, r- ich odległość, a G- stała grawitacyjna. Uproszczenie na powierzchni Ziemi: m m G R 1 Z mg m1 m m G gr M Z Z (3.16) M Z 45

46 Konsekwencja prawa grawitacyjnego Konsekwencja prawa grawitacyjnego: Prawa Keplera I prawo Keplera Każda planeta krąży po orbicie eliptycznej, ze Słońcem w jednym z ognisk tej elipsy. II prawo Keplera (prawo równych pól) Linia łącząca Słońce i planetę zakreśla równe pola w równych odstępach czasu. III prawo Keplera Sześciany półosi wielkich orbit dowolnych dwóch planet mają się do siebie jak kwadraty ich okresów obiegu. (Półoś wielka jest połową najdłuższej cięciwy elipsy). 46

47 Dziękuję za uwagę! 47

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

DYNAMIKA WYKŁAD 3 3. DYNAMIKA PUNKTU MATERIALNEGO

DYNAMIKA WYKŁAD 3 3. DYNAMIKA PUNKTU MATERIALNEGO WYKŁAD 3 DYNAMIKA 2. Kinematyka punktu materialnego: 3. DYNAMIKA PUNKTU MATERIALNEGO 3.1. Oddziaływania podstawowe 3.2. Masa, pęd i siła 3.3. Zasady dynamiki Newtona 3.4. Prawo powszechnego ciążenia 3.5.

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 1 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Użyteczne informacje Moja strona domowa: www.if.pwr.wroc.pl/~piosit informacje do wykładu: Dydaktyka/Mechaniczny Miejsce

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

KINEMATYKA czyli opis ruchu. Marian Talar

KINEMATYKA czyli opis ruchu. Marian Talar KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ). O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Fizyka 4. Janusz Andrzejewski

Fizyka 4. Janusz Andrzejewski Fizyka 4 Ruch jednostajny po okręgu 2 Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej.

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

2.3. Pierwsza zasada dynamiki Newtona

2.3. Pierwsza zasada dynamiki Newtona Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Użyteczne informacje Moja strona domowa: if.pwr.edu.pl/~piosit informacje do wykładu: Dydaktyka/Elektronika 1 Miejsce konsultacji:

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Obraz Ziemi widzianej z Księżyca

Obraz Ziemi widzianej z Księżyca Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 2

Plan wynikowy fizyka rozszerzona klasa 2 Plan wynikowy fizyka rozszerzona klasa 2 1. Opis ruchu postępowego Temat lekcji Elementy działań na wektorach dostateczną uczeń podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku

Bardziej szczegółowo

Wykład 2 Mechanika Newtona

Wykład 2 Mechanika Newtona Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo