21 Symetrie Grupy symetrii Grupa translacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "21 Symetrie Grupy symetrii Grupa translacji"

Transkrypt

1 21 Symetrie 21.1 Grupy symetrii Spróbujmy odpowiedzieć sobie na pytanie, jak zmienia się stan układu kwantowego pod wpływem transformacji układu współrzędnych. Najprostszą taką transformacją jest np. przesunięcie lub obrót układu współrzędnych. Warto od razu zauważyć, że tego typu transformację możemy zinterpretować jako przesunięcie lub obrót samego układu fizycznego. Stąd bierna i aktywna interpretacja takiej transformacji. Druga uwaga dotyczy matematycznych własności wspomnianych transformacji: otóż zarówno translacje jak i obroty są grupami symetrii. Dysponujemy zatem silnym aparatem matematycznym, który można zastosować w mechanice kwantowej. Przypomnijmy pokrótce definicję grupy. Zbiór obiektów a, b, c... tworzy grupę G, jeżeli można zdefiniować działanie o następujących własnościach: 1. dla każdych a, b G wynik a b G, 2. istnieje element e G, taki że a e = e a = a zwany elementem jednostkowym), 3. do każdego elementu a istnieje element odwrotny a 1, taki że a a 1 = a 1 a = e, 4. działanie jest łączne: a b) c = a b c). Dodatkowo jeśli działanie jest przemienne, to mówimy, że grupa G jest abelowa przemienna). Np. Liczby całkowite 0, ±1, ±2,... tworzą grupę względem dodawania, a elementem jednostkowym jest tutaj 0. Jest to oczywiście grupa przemienna. Grupy mogą składać się ze skończonej liczby elementów, z przeliczalnej liczby elementów, lub z nieprzeliczalnej liczby elementów. W tym ostatnim przypadku elementy grupy wygodnie jest oznaczyć jako funkcje jednego lub kilku ciągłych parametrów. Łatwo przekonać się, że translacje czy obroty są grupami ciągłymi zależnymi od trzech ciągłych parametrów. W przypadku translacji są to trzy składowe wektora przesunięcia, a w przypadku obrotów trzy kąty. W fizyce często wprowadzamy inną, nieco bardziej formalną grupę, mianowicie grupę translacji czasowych. Na koniec tego krótkiego wstępu warto zaznaczyć, że w fizyce odgrywają rolę nie tylko grupy związane z transformacjami czasu i przestrzeni, ale również grupy transformacji w pewnych abstrakcyjnych przetrzeniach. Wrócimy jeszcze do tego problemu w dalszych rozdziałach Grupa translacji Mówiąc o translacji układu fizycznego mamy na myśli transformację r r = r + a, 21.1) 117

2 gdzie a jest wektorem translacji. Powstaje pytanie, jak zmienia się funkcja falowa układu fizycznego pod wpływem takiego przesunięcia. Jeżeli w przestrzeni nie ma żadnych pól np. elektomagnetycznych lub grawitacyjnych, które byłyby na sztywno związane z jakimś wyróżnionym układem odniesienia) to stan układu kwantowego zasadniczo nie powinien ulec zmianie. Oczywiście pakiet falowy o maksimum w punkcie r 0 zamieni się w pakiet falowy o maksimum w punkcie r 0 + a, ale np. kształt pakietu nie ulegnie zmianie. Czyli jeśli przed przesunięciem układ opisuje funkcja falowa ψ α r), to po przesunięciu opisywany jest on funkcją falową ψ β r + a). Postulat współzmienniczości względem tanslacji sprowadza się do równania ψ β r + a) = ψ α r) lub ψ β r) = ψ α r a) 21.2) Aby odpowiedzieć na pytanie, jak ze stanu kwantowego α otrzymać matematycznie stan β, zdefiniujmy operator U a), taki że Û a) ψ α r) = ψ β r). 21.3) Zauważmy, że równanie??) podaje przepis, jak przejść od jednego stanu do drugiego dla układu w tym samym punkcie. Od razu z zachowania normy dostajemy warunek Û a)û a) = 1, 21.4) czyli że operator U jest unitarny. Aby znalezć jawną postać operatora U musimy skorzystać z równania??) Û a) ψ α r) = ψ α r a). 21.5) Warto w tym miejscu zauważyć, że równanie??) stosuje się w zasadzie dla dowolnej transformacji przestrzennej R: r r = R r, 21.6) wówczas Û R ψ α r) = ψ α R 1 r). 21.7) Dalej wystarczy założyć, że translacja??) jest infinitenzymalna, tzn. że a jest małe i ψ α r a) = ψ α r) a ψ α r) a ) 2 ψα r) +..., 21.8) a stąd Û a) = 1 a a ) +... = e a. 21.9) Na koniec warto przepisać??) przy pomocy operatora pędu Û a) = e i a p/ h = e iax ˆpx+ay ˆpy+az ˆpz)/ h ) 118

3 Widzimy, że operatory Û a) tworzą grupę abelową w sensie definicji podanej na początku rozdziału, a poszczególne elementy tej grupy numerowane są trzema ciągłymi parametrami a x, a y i a z. Elementem jednostkowym jest a elementem odwrotnym Û0) = 1, Û 1 a) = Û a) = ei a p/ h. Operator Û przyjmuje postać??) niezależnie od reprezentacji jaką wybierzemy dla operatora p. Operator pędu nazywamy w tym kontekście generatorem grupy Równanie ruchu Czy z faktu, że ψ α t, r) spełnia zależne od czasu równanie Schrödingera i h d dt ψ α t, r) = Ĥ ψ α t, r) 21.11) wynika, że ψ β t, r) jest także rozwiązaniem zależnego od czasu równania Schrödingera? Sprawdźmy i h d dt ψ β t, r) = i h d ) ÛR ψ dt α t, r) i h d ) dt ψ α t, r) = ÛR = ÛRĤ ψ α t, r) = ÛRĤ Û R ψ β t, r), 21.12) gdzie w ostatnim kroku skorzystaliśmy z unitarności operatora ÛR i równania??). Równanie to przyjmuje oryginalną postać gdy ] Û R Ĥ Û R [ÛR = Ĥ, czyli, Ĥ = ) Stosując równanie??) do transformacji symetrii, otrzymujemy, że musi zachodzić [ ] ˆp, Ĥ = ) Aby wykazać??) wystarczy rozwinąć Û według??). A zatem, aby układ fizyczny po przesunięciu nadal pozostawał tym samym układem fizycznym czyli spełniał równanie Schrödingera), operator pędu czyli generator symetrii) i hamiltonian układu muszą komutować czyli posiadać wspólny układ funkcji własnych). O takim układzie mówimy, że jest niezmienniczy względem translacji. 119

4 Elementy macierzowe stanów przesuniętych Dotychczas nasze wywody prowadziliśmy w oparciu o funkcje falowe w przedstawieniu położeniowym. Jednakże równanie??) można z łatwością przepisać w notacji bra i ket Diraka: β = ÛR α ) Podobnie dla stanu sprzężonego β = α Û R ) Wykorzystując równania??) i??) zapiszmy element macierzowy dowolnego operatora dynamicznego Ô w układzie przetransformowanym: β Ô R β = α Û RÔRÛR α = α Ô α ) Widzimy zatem, że operator w układzie wyjściowym wyraża się przez operator w układzie przetransformowanym Ô = Û RÔRÛR ) Wróćmy do translacji. Intuicyjnie, współrzędna r k w układzie przesuniętym o a, z punktu widzenia układu wyjściwego ma wrtość r k + a k. Sprawdźmy, jak wygląda to w naszym formaliźmie. Przyjmując, że ÔR = ˆr k, mamy Ô = 1 + ī ) a h iˆp i +... ˆr k 1 ī ) a h iˆp i +... = ˆr k + ī h a i [ˆp i, ˆr k ] = r k + ī h a i i hδ ik ) = r k + a k ) Zatem elementy macierzowe operatora położenia w stanach przesuniętych β są równe odpowiednim elementom macierzowym operatora r + a w stanach wyjściowych α. Z kolei, jeśli Ô R = ˆp, to operator Ô = ˆp. Podobnie jest dla każdego operatora, który jest funkcją ˆp Translacje w czasie Rozpatrzmy teraz analogicznie transformację polegającą na translacji czasowej. Wówczas Korzystajc z analogonu wzoru??) ψ β t + τ, r) = ψ α r) lub ψ β t, r) = ψ α t τ, r) ) Û T τ) ψ α t, r) = ψ α t τ, r) 21.21) i stosując rozwinięcie Taylora ψ α t τ, r) = 1 τ ddt + τ ) 2 d 2 2! dt +... ψ 2 α t, r) = e τ d dt ψα t, r) ) 120

5 Stąd Û T τ) = e iτĥ/ h 21.23) pod warunkiem, że Ĥ nie zależy od czasu. Tylko wtedy wyższe pochodne dn /dt n dają się zastąpić przez Ĥn. Oczywiście ÛT komutuje z Ĥ i układ posiada symetrię niezmienniczości translacyjnej w czasie Grupa obrotów Generatory grupy obrotów Aby znaleźć formę operatora ÛR dla obrotów musimy najpierw skonstruować przekształcenie przestrzenne odpowiadające obrotowi wektora r. Każdy obrót R można przedstawić jako złożenie trzech obrotów kolejno wokó osi z, x i y 1 : R = R y φ y )R x φ x )R z φ z ), 21.24) gdzie φ x,y,z są kątami obrotu wokó odpowiednich osi. Warto zaznaczyć, że istotną rolę odgrywa tu kolejność obrotów, gdyż nie są to operacje przemienne. Za dodatni kierunek obrotu przyjmijmy kierunek przeciwny ruchowi wskazówek zegara, wówczas obrót o kąt φ z daje się zapisać za pomocą przekształcenia macierzowego x y z = cos φ z sin φ z 0 sin φ z cos φ z x y z ) Rzeczywicie dla wektora r = x, 0, 0) leżącego na osi x po obrocie r = x cos φ z, x sin φ z, 0), a więc współrzędna x zmalała a y wzrosła. Obrót wokó osi x o kąt φ x przyjmuje postać x y z = cos φ x sin φ x 0 sin φ x cos φ x natomiast obrót wokó osi y o kąt φ y daje się zapisać jako: x y z cos φ y 0 sin φ y = sin φ y cos φ y x y z x y z 21.26) ) Zwróćmy uwagę, że znak dla obrotu wokó osi y pojawia się w dolnym rogu macierzy R y, a nie jak w przypadku obrotów wokó osi z i x ponad diagonalną ze względu na to, że przyjęliśmy, że obroty wykonywane są przeciwnie do ruchu wskazówek zegara. 1 Nie jest to jedyna możliwość, wrócimy do tego problemu w rozdziale??. 121

6 Ponieważ, aby wyliczyć postać operatora ÛR będziemy korzystali z rozwinięcia Taylora, wystarczy rozważyć obroty infinitenzymalne: 0 φ z 0 R z = 1 + φ z , R x = φ x +..., 0 φ x φ y R y = ) φ y 0 0 Pełna macierz R jest iloczynem macierzy??). W przypadku obrotów infinitenzymalnych nie gra roli kolejność, gdyż różnica między dwoma obrotami wykonanymi w różnej kolejności jest wyższego rzędu w kątach φ. Zatem R = φ z φ y φ z 0 φ x φ y φ x ) Stąd r = R r = r + φ y z φ z y φ z x φ x z φ x y φ y x +... = r + φ r +..., 21.30) gdzie wektor φ jest zdefiniowany jako: Skorzystamy teraz z równania??): φ = φ x φ y φ z Û R φ)ψ α r) = ψ α R 1 r), ) gdzie R 1 otrzymuje się z R przez zamianę φ φ we wzorze??): Û R φ)ψ α r) = ψ α r ) φ r) = ψ α r) φ r ψ α r) { = 1 φ r )} ψ α r) { = 1 ī } h φ r p) ψ α r) { = 1 ī } h φ L ψ α r) ) 122

7 Po eksponencjacji otrzymujemy jawną postać operatora ÛR: Û R φ ) = e ī h φ L ) Widzimy zatem, że trzy składowe operatora momentu pędu stanowią generatory transformacji obrotu. Jak wiemy spełniają one relację komutacji [ˆLi, ˆL k ] = i h ɛ ijk ˆLk. Warto spróbować relację??) definiującą obrót w przestrzeni położeń przepisać w postaci analogicznej do??,??). W tym celu przepiszmy ją dla składowej k wektora r ) r k = r k + φ k r = r k + ɛ klm φ l r m = δ km φ l ɛ lkm ) r m ) Zdefiniujmy teraz trzy macierze l = 1, 2, 3 ) o wymiarach 3 3: które przyjmują jawną postać s 1 = 0 0 1, s 2 = s l km = ɛ lkm, 21.35) , s 3 = Przy pomocy tych macierzy możemy zapisać macierz R jako ) R = 1 + φ 1 s 1 + φ 2 s 2 + φ 3 s 3 = 1 + φ s ) Nawiasem mówiąc, ten związek możny już było odczytać ze wzoru??).definiując nowe macierze S l : S l = i hs l 21.38) możemy przepisać R w postaci analogicznej do ÛR: Widzimy zatem, że macierze R = 1 ī h φ S ) S l ) km = i h ɛ lkm 21.40) są generatorami obrotów w przestrzeni położeń. Spróbujmy podsumować dotychczasowe wyniki. Po pierwsze pokazaliśmy, że generatorami grupy obrotów są składowe operatora momentu pędu. Za ich pomocą można zapisać operator obrotu ÛR działający w przestrzeni funkcji falowych. Z poprzednich rozważań wiemy, że przestrzeń, w której działają te operatory daje się scharakteryzować dwoma liczbami kwantowymi l i m. Dla wybranego, ustalonego l operatory te możemy zastąpić przez macierze o wymiarach 2l + 1) 2l + 1). Po drugie, okazało się, że zwykłą 123

8 transformację obrotu w przestrzeni położeń możemy zapisać przy pomocy generatorów S l, które są macierzami 3 3. Stąd wniosek, że dla tej reprezentacji grupy obrotów l = 1. Warto się przekonać, że S l ) 2 = 2 h ) l= Ponieważ wartość własna operatora ˆL 2 wynosi ll + 1), we wzorze??) l = 1. Dotychczas zakładaliśmy milcząco, że funkcje falowe ψ α są skalarami względem transformacji obrotu. Ale można sobie łatwo wyobrazić funkcję falową, która sama jest trójwymiarowym wektorem ψ 1 α r) ψ α r) = ψ 2 α r) ) ψ 2 α r) Wówczas prawo transformacji przybiera postać ψ β R r) = R ψ α r) ) Macierz R działa tylko na wskaźniki wektorowe funkcji falowej, a nie na indeksy α, β. Stąd operator ÛR spełnia równanie Û R ψα r) = ψ β r) = R ψ α R 1 r) ) Dla obrotów infinitenzymalnych Û R ψα r) = = = 1 ī ) h φ S ψ α r φ r) 1 ī ) h φ S 1 ī ) h φ L ψ α r) 1 ī h φ S ī ) h φ L ψ α r) ) Pamiętajmy, że S działają na indeksy wektorowe funkcji ψ α r), a L są operatorami różniczkowymi. Zatem ) Û R φ = 1 ī h ) φ S + ˆL ) czyli że generatory obrotów są sumą generatora L i generatora S. 124

(U.11) Obroty i moment pędu

(U.11) Obroty i moment pędu 3.10.2004 32. U.11) Obroty i moment pędu 96 Rozdział 32 U.11) Obroty i moment pędu 32.1 Wprowadzenie Obroty w przestrzeni R 3 są scharakteryzowane przez podanie osi obrotu, którą określa wektor jednostkowy

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

1 Grupa SU(3) i klasyfikacja cząstek

1 Grupa SU(3) i klasyfikacja cząstek Grupa SU(3) i klasyfikacja cząstek. Grupa SU(N) Unitarne (zespolone) macierze N N można sparametryzować pzez N rzeczywistych parametrów. Ale detu =, unitarność: U U = narzucają dodatkowe warunki. Rozważmy

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

5 Reprezentacje połozeniowa i pedowa

5 Reprezentacje połozeniowa i pedowa 5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym

Bardziej szczegółowo

Symetrie i prawa zachowania Wykład 6

Symetrie i prawa zachowania Wykład 6 Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

(U.14) Oddziaływanie z polem elektromagnetycznym

(U.14) Oddziaływanie z polem elektromagnetycznym 3.10.2004 35. U.14 Oddziaływanie z polem elektromagnetycznym 131 Rozdział 35 U.14 Oddziaływanie z polem elektromagnetycznym 35.1 Niezmienniczość ze względu na W rozdziale 16 wspominaliśmy jedynie o podstawowych

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

Reprezentacje położeniowa i pędowa

Reprezentacje położeniowa i pędowa 3.10.2004 9. Reprezentacje położeniowa i pędowa 103 Rozdział 9 Reprezentacje położeniowa i pędowa 9.1 Reprezentacja położeniowa Reprezentacja położeniowa jest szczególnie uprzywilejowana i najczęściej

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Symetria w fizyce materii

Symetria w fizyce materii Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ). Zad (0p) Zaznacz na płaszczyźnie zespolonej wszystkie z C, które spełniają równanie ( iz 3 z z ) Re [(z + 3) ( z 3) = 0 Szukane z C spełniają: iz 3 = z z Re [(z + 3) ( z 3) = 0 Zajmijmy się najpierw pierwszym

Bardziej szczegółowo

Wielomiany Legendre a, itp.

Wielomiany Legendre a, itp. 3.0.2004 Dod. mat. D. Wieomiany Legendre a, itp. 25 Dodatek D Wieomiany Legendre a, itp. Wieomiany Legendre a i stowarzyszone z nimi funkcje są szeroko omawiane w wieu podręcznikach fizyki matematycznej.

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

15 Potencjały sferycznie symetryczne

15 Potencjały sferycznie symetryczne z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Model przepływów międzygałęziowych (model Leontiewa)

Model przepływów międzygałęziowych (model Leontiewa) Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) = Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ

z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

(U.16) Dodawanie momentów pędu

(U.16) Dodawanie momentów pędu .0.004 7. (U.6) Dodawanie momentów pędu 5 Rozdział 7 (U.6) Dodawanie momentów pędu 7. Złożenie orbitalnego momentu pędu i spinu / 7.. Przejście do bazy sprzężonej W praktycznych zastosowaniach potrzebujemy

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu

Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu 3.10.2004 7. Notacja Diraca 84 Rozdział 7 Notacja Diraca 7.1 Abstrakcyjna przestrzeń wektorów stanu Do tej pory posługiwaliśmy się postulatem, że stan układu fizycznego jest w mechanice kwantowej w pełni

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo