Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania"

Transkrypt

1 Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Metody i narzędzia diagnostyki procesów dr inż. Michał Grochowski tel: Strona (tymczasowa): -

2 Wykorzystane w prezentacji materiały: Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N. and Yin, K., A review of process fault detection and diagnosis: Part I, Part II, Part I. Computers and Chemical Engineering 27, Korbicz, J., Kościelny, J, Kowalczuk, Z., Cholewa, W. Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Wydawnictwa Naukowo Techniczne, Warszawa 2002; Ardakanian i Martin-Bordes, Proceedings of the 2nd Regional Workshop on Water Loss Reduction in Water & Sanitation Utilities 2009; Blanke M.,Kinnaert,M., Lunze, J., Staroswiecki M. Diagnosis and Fault-Tolerant Control. Springer- Verlag, 2006; Krotowski, A. Systemy wizyjne do optycznej inspekcji procesów przemysłowych wykorzystujące zaawansowane metody rozpoznawania obrazu ze szczególnym z uwzględnieniem metod inteligentnych. Praca magisterska, Promotor: dr inż. M. Grochowski; Sikora, M., Grochowski, M. Wykorzystanie sieci neuronowych do diagnostyki poprawności wykonania płytek drukowanych. Pomiary Automatyka Robotyka 2/2011

3 Przykłady awarii/anomalii: w systemach wodociągowych Stosunkowo prosta diagnostyka

4 Przykłady awarii/anomalii: w systemach wodociągowych Przykład pęknięcia będącego źródłem wycieku o natężeniu Q=100m3/h źródło: Ardakanian i Martin-Bordes, 2009

5 Przykłady awarii/anomalii: w systemach wodociągowych Straty wody Niemcy (1999) Dania (1997) Finlandia (1999) Szwecja (2000) Hiszpania Wlk. Brytania Słowacja (1999) Francja (1997) Włochy (2001) Rumunia (1999) Czechy (2000) Irlandia (2000) Węgry (1995) Słowacja (1999) Bułgaria (1996) % zużycia wody Seul (Korea Hong Kong Phnom Penh Taszkent Wientian (Laos) Karaczi Ułan Bator Katmandu Ho Chi Minh Dhaka Kuala Lumpur Dżakarta Delhi Kolombo (Sri Manila % zużycia wody

6 Przykłady awarii/anomalii: w systemach rafineryjnych VARIABLES/SENSORS INCLUDED IN PCA MODEL CATALYST COOLER MONITORING TI BOILER FEED WAT ER PDR Steam Drum STEAM TI FC REGENERATOR CROSS SECTION TEMPERATURE INDICATORS INCLUDED IN PCA MODEL (CATALYST COOLER) CATALYST COOLERS D A C CATALYST COOLERS B źródło: S. Joe Qin. Process Chemometric Techniques and Applications. Department of Chemical Engineering The University of Texas at Austin

7 Przykłady awarii/anomalii: łożysk

8 Przykłady awarii/anomalii: układów elektronicznych źródło: Sikora i Grochowski 2011

9 Przykłady awarii/anomalii: inne przykłady

10 Przykłady awarii/anomalii: inne przykłady

11 Przykłady awarii/anomalii: inne przykłady źródło: Krotowski, A. 2008

12 Przykłady awarii/anomalii: inne przykłady źródło: Krotowski, A. 2008

13 Przykłady awarii/anomalii: inne przykłady źródło: źródło: wp-content/uploads/2012/01/potassiumspectrum-of-ecg-changes.jpg

14 Przykłady awarii/anomalii: inne przykłady źródło:

15 Przykłady awarii/anomalii: inne przykłady opencv-lane-vehicle-track programming/lane-detection-with-opencv-and-c/ sequoia.ict.pwr.wroc.pl/ ~witold/aiarr/ 2009_projekty/semafory

16 Przykłady awarii/anomalii: inne przykłady

17 Przykłady awarii/anomalii: inne przykłady

18 Rozpoznawanie twarzy Metoda Resize Najprostsza z metod. Polega na kolejnej redukcji wymiaru danych opisujących zdjęcie (skala odcieni szarości, wyrównywanie histogramem, binaryzacja, siatka redukcyjna) Proces skalowania obrazów: oryginalnego (a) do obrazu w skali szarości (b) o wymiarach 32x32 pikseli (c) o wymiarach 16x16 pikseli (d) źródło: Sikora M. Inteligentny system rozpoznawania twarzy w czasie rzeczywistym implementacja sprzętowa. Praca magisterska, 2012.

19 Rozpoznawanie twarzy

20 Rozpoznawanie twarzy Metoda Length Metoda bazuje na obliczaniu odległości pomiędzy charakterystycznymi punktami twarzy człowieka. Do poprawnego zadziałania tej metody musimy z wynikiem pozytywnym odnaleźć na twarzy danej osoby takie elementy jak: obydwoje oczu, nos oraz usta. Przy wyszukiwaniu ww. elementów najlepiej skorzystać z estymatora Haar a. L1 L3 L2 źródło: Sikora M. Inteligentny system rozpoznawania twarzy w czasie rzeczywistym implementacja sprzętowa. Praca magisterska, 2012.

21 Rozpoznawanie twarzy Metoda Length Posiadając odnalezione te elementy przystępujemy do obliczenia środka każdego z nich. Następnie obliczana jest odległość pomiędzy środkiem każdego z tych elementów. W celu uniezależnienia wyników od odległości od kamery, a jedynie od kształtu ludzkiej twarzy należy obliczyć stosunki tych odległości. L1 L2 Wykorzystanie trzech zależności: L1/L2; L1/L3; L2/L3. L3 źródło: Sikora M. Inteligentny system rozpoznawania twarzy w czasie rzeczywistym implementacja sprzętowa. Praca magisterska, 2012.

22 Rozpoznawanie twarzy Metoda LBPH Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Przykład transformacji twarzy metodą Local Pattern Binary Histogram w różnych warunkach oświetleniowych źródło: Dokumentacja OpenCV

23 Rozpoznawanie twarzy Metoda LBPH Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Na podstawie: Pietikäinen M.; Hadid A.; Zhao G.; Ahonen T.; "Computer Vision Using Local Binary Patterns", Machine Vision Group, University of Oulu, Finland, 2011 Jako klasyfikator do analizy zdjęć w dziedzinie LBPH, dzieli się obraz na pewną liczbę obszarów i wykorzystuje się porównywanie histogramów. Histogramy zapisane w postaci wektora, o kolejnych elementach będących liczbami pikseli w danym zakresie intensywności, mogą być porównywane w prosty sposób, za pomocą metody Najbliższego Sąsiada. Niekiedy stosuje się także bardziej zaawansowane techniki, jak PCA czy LDA w celu przeniesienia histogramu do innej przestrzeni. źródło: Dokumentacja OpenCV

24 Rozpoznawanie twarzy Metoda LBPH Główną ideą algorytmu jest sumowanie lokalnej struktury zdjęcia poprzez porównywanie każdego piksela z jego sąsiedztwem. Wybierany jest środkowy piksel kwadratowego obszaru (w wersji podstawowej 3x3 pikseli), a jego sąsiedztwo jest poddawane progowaniu. W zależności od tego, czy dany sąsiadujący piksel jest większy od progu, czy nie, przyjmuje wartość 1 lub 0. Następnie odczytuje się liczbę binarną zapisaną dookoła środkowego piksela. Dla ośmiu pikseli sąsiadujących istnieje 256 kombinacji, zwanych Local Binary Patterns. Sposób analizy ramek 3x3 w metodzie LBPH źródło: Hewitt R. How OpenCV s Face Tracker Works, SERVO Magazine, 2007

25 Rozpoznawanie twarzy Metoda Eigenfaces Pierwszą fazą algorytmu jest przygotowanie zbioru zdjęć uczących. Przykładowy zbiór składający się z M=21 zdjęć, o rozmiarach: 100x120 pikseli

26 Rozpoznawanie twarzy Metoda Eigenfaces Kolejną fazą algorytmu jest przekonwertowanie zbioru zdjęć uczących do skali odcieni szarości.

27 Rozpoznawanie twarzy Metoda Eigenfaces Następnie należy obliczyć zdjęcie, będące średnią arytmetyczną wszystkich zdjęć uczących. Ostatnim etapem przygotowywania próbek jest odjęcie od wszystkich zdjęć zdjęcia średniego.

28 Rozpoznawanie twarzy Metoda Eigenfaces Algorytm Dla omawianego przykładu, zbiór dwudziestu wybranych twarzy własnych wygląda następująco: Dla analizowanego przykładu, takie podejście redukuje rozmiar macierzy kowariancji poddanej PCA z 12000x12000 do 20x20. Spośród wektorów własnych, 20 wektorów wystarcza (???) do wiernego (???) przedstawienia obrazu twarzy.

29 Przykładowa twarz i jej wektor wag utworzona przy wykorzystaniu 20 twarzy własnych Rekonstrukcja twarzy polega na odpowiednim przemnożeniu poszczególnych elementów wektora wag przez odpowiadające twarze główne oraz dodaniu twarzy średniej. Przykładowa twarz i jej wektor wag utworzona przy wykorzystaniu 20 twarzy własnych Rekonstrukcja twarzy polega na odpowiednim przemnożeniu poszczególnych elementów wektora wag przez odpowiadające twarze główne oraz dodaniu twarzy średniej. Na podstawie: Błaszkowski P. Wykrywanie, rozpoznawanie i śledzenie ruchomych obiektów poprzez niezależną platformę monitorującą, przy wykorzystaniu sztucznych sieci neuronowych. Praca magisterska, 2013;

30 Przyczyny i skutki stanów awaryjnych/uszkodzeń/anomalii systemów: Przyczyny Skutki Technologiczna złożoność systemu Sprzętowa złożoność systemu Informatyczna złożoność systemu Błędy operatorów Przeciążenie informacyjne operatorów/systemu Oszczędności Niewidoczne gołym okiem skutki uszkodzeń Maskowanie uszkodzeń przez system pomiarowy Stany awaryjne, anormalne Straty ekonomiczne Straty wizerunkowe Skażenie środowiska Uszczerbki na zdrowiu; zagrożenie życia

31 Przykłady awarii/anomalii pęknięcie rury w systemie wodociągowym: Uszkodzenia (lub ich symptomy) bardzo często są niewidoczne nieuzbrojonym okiem Przebieg ciśnienia w węźle pomiarowym oraz dopływających przepływów, przed i w trakcie wycieku o wielkości ok. 1m3/h (1000 l/h). Na szaro zaznaczono okres trwania wycieku źródło: Nowicki, 2010

32 Co będziemy rozumieli przez diagnozowanie Diagnozowanie (rozpoznawanie stanów) traktowane będzie jako proces wykrywania i rozróżniania uszkodzeń obiektu w wyniku zbierania, przetwarzania, analizy i oceny sygnałów diagnostycznych. W zależności od rodzaju obiektu i posiadanej wiedzy na jego temat, wynikiem diagnozowania może być szczegółowa identyfikacja uszkodzenia lub jedynie określenie klasy stanu. Na podstawie: Korbicz i inni, 2002

33 Podział obszarów diagnostyki: Diagnostyka Maszyn Procesów

34 Podział obszarów diagnostyki: Diagnostyka maszyn Zajmuje się oceną stanu urządzeń mechanicznych poprzez badania bezpośrednie ich własności i badania pośrednie procesów towarzyszących funkcjonowaniu tych urządzeń, tzw. procesów resztkowych. Procesy resztkowe mogą mieć charakter mechaniczny, elektryczny, termiczny itp. Szczególną rolę odgrywają procesy wibroakustyczne (drganie, hałas) one najczęściej są wykorzystywane do pośredniej oceny stanu obiektów. Na podstawie: Korbicz i inni, 2002

35 Podział obszarów diagnostyki: Diagnostyka procesów (przemysłowych) Zajmuje się rozpoznawaniem zmian stanów tych procesów, gdzie procesy przemysłowe rozumiane są jako ciąg celowych działań realizowanych w ustalonym czasie przez określony zbiór maszyn i urządzeń przy określonych dostępnych zasobach. Jako przyczyny zmian stanów rozpatrywane są uszkodzenia i inne zdarzenia destrukcyjne. Zadaniem diagnostyki procesów przemysłowych jest wczesne wykrywanie i dokładne rozpoznanie (rozróżnianie) powstających uszkodzeń. Zdarzenia destrukcyjne, takie jak zużycie traktowane są jako pewien rodzaj uszkodzenia, które powinno być wykryte i rozpoznane po przekroczeniu pewnej wartości. Na podstawie: Korbicz i inni, 2002

36 Podział obszarów diagnostyki: Diagnostyka Maszyn Procesów Metody inteligencji obliczeniowej Teoria grafów Automatyka Wiedza Branżowa Informatyka EKF Wielowymiarowe analizy statystyczne Łańcuchy Markowa Diagnostyka techniczna Drzewa uszkodzeń

37 Podstawowe pojęcia: d zakłócenia u wejścia OBIEKT y wyjścia Opis obiektu dynamicznego uwzględniający uszkodzenia f uszkodzenia Schemat obiektu dynamicznego uwzględniający uszkodzenia x ( t) y( t) f [ x( t), u( t), d( t), g[ x( t), u( t), d( t), f f ( t)] ( t)]

38 Podstawowe pojęcia: Stan obiektu Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Stan obiektu/procesu rozumie się jako przynależność do jednego ze zdefiniowanych stanów (np. normalny, zakłóceniowy, awaryjny, ale też: wzmożonych opadów deszczu, oblodzonej nawierzchni ). Stan obiektu/procesu złożonego jest najczęściej określony poprzez zbiór stanów elementów/podzespołów/procesów składowych danego obiektu. Zmiana stanu obiektu może nastąpić wskutek wystąpienia jego uszkodzenia, zużycia oraz innych zdarzeń powodujących inne od zakładanego funkcjonowanie obiektu. Na podstawie: Korbicz i inni, 2002

39 Podstawowe pojęcia: Uszkodzenie obiektu Jako uszkodzenie (fault) rozumiemy każde zdarzenie powodujące pośrednio bądź bezpośrednio niepożądaną zmianę pracy obiektu/procesu. Przykłady uszkodzeń (poza typowymi!!): wyciek wody w sieci dystrybucji wody pitnej, zakłócenie pracy biologicznej oczyszczalni ścieków poprzez dopływ ścieków skażonych metalami ciężkimi, pojawienie się pasożytniczych reakcji w procesie np. fermentacji, brak/przekłamanie danych pomiarowych, niepoprawny skład surowców wejściowych do danego procesu, błędne sterowanie kolumną destylacyjną. Na podstawie: Korbicz i inni, 2002

40 Podstawowe pojęcia: Rozróżniamy następujące klasy uszkodzeń i/lub anomalii: Zmiany parametrów (skompensowanych/zastępczych) w modelu Najczęściej w modelowanych procesach/obiektach występują zjawiska o wyższym stopniu złożoności niż opisują to modele; Czasami wpływ nie ujętych przez model procesów się ujawnia - często pod wpływem nieanalizowanych wcześniej warunków; To implikuje zmiany np. dynamiki modelu, najczęściej w stanach przejściowych. Zmiany strukturalne Zmiany parametrów modeli spowodowane np. zużyciem, czy fizycznym zepsuciem (korozja, zarastanie rur, zatkanie zaworu, wyciek wody, uszkodzenie regulatora, błędy w przepływie informacji ). Uszkodzenia/dysfunkcje/awarie czujników i urządzeń wykonawczych Uszkodzenia czujników lub urządzeń wykonawczych mogą spowodować uszkodzenie obiektu czy też doprowadzenie procesu do niepożądanego stanu (nawet krytycznego). Na podstawie: Venkatasubramanian i inni, 2002

41 Miejsce diagnostyki procesów w strukturze sterowania Algorytm sterujący Akomodacja uszkodzeń Diagnostyka uszkodzeń Sterowanie nadzorujące d f r Regulator u OBIEKT y Schemat systemu sterowania tolerującego uszkodzenia

42 Pożądane cechy systemów diagnostycznych: Na podstawie: Venkatasubramanian i inni, 2002 Szybka detekcja i diagnoza System powinien szybko wykrywać i diagnozować uszkodzenie; Szybkie wykrywanie uszkodzeń i tolerowanie zmian w procesach podczas ich normalnej pracy są najczęściej w sprzeczności; System zaprojektowany żeby wykrywać nagłe zmiany będzie bardzo czuły na zakłócenia o dużej częstotliwości, szumy itp. dużo fałszywych alarmów; Problem analogiczny do znanego z teorii sterowania kompromisu pomiędzy krzepkością a jakością sterowania. Zdolność do izolacji/wyodrębnienia uszkodzenia (Isolability) Zdolność do precyzyjnego wskazania konkretnego uszkodzenia (w warunkach idealnych); Niestety warunków idealnych nie ma (zakłócenia, szumy, niepewności w modelach itp ); Systemy o wysokiej zdolności do rozróżniania uszkodzeń najczęściej słabo dają sobie radę z niepewnością modeli i odwrotnie; Należy znaleźć kompromis. Krzepkość Pożądane jest aby system był odporny na szumy i niepewności; Pożądane jest aby jakość działania systemu zmieniała się stopniowo a nie nagle i gwałtownie; Konieczne jest odpowiednie ustawienie progów czułości systemu.

43 Pożądane cechy systemów diagnostycznych: Na podstawie: Venkatasubramanian i inni, 2002 Zdolność do identyfikacji nowych stanów/zdarzeń/uszkodzeń (Novelty identifiability) Minimalnym wymaganiem dla systemu diagnostycznego jest stwierdzenie czy obiekt/proces działa w stanie normalnym (bezzakłóceniowym) czy też zakłóceniowym; Jeżeli w zakłóceniowym to czy stan ten jest spowodowany poprzez znane uszkodzenie/zakłócenie czy też jakieś nowe; Najczęściej jest wystarczająca ilość danych do zamodelowania stanu normalnej pracy obiektu, ciężko jest natomiast zamodelować wszelkie możliwe stany uszkodzeniowe; Wymaga się aby system co najmniej wskazał że wykryto nowe uszkodzenie (i się go nauczył) a nie zaklasyfikował go (błędnie) do jakiegoś istniejącego stanu. Estymacja błędu klasyfikacji Praktycznym wymogiem jest oszacowanie a priori błędu klasyfikacji; Zwiększa to możliwość wyboru podjęcia decyzji operatorowi procesu (plusy i minusy). Adaptowalność Zdolność systemu do adaptacji do zmieniających się warunków otoczenia; Zdolność systemu do wykorzystywania nowych informacji.

44 Pożądane cechy systemów diagnostycznych: Na podstawie: Venkatasubramanian i inni, 2002 Zdolność systemu do tłumaczenia skutków uszkodzenia (Explanation facility) Zdolność systemu do wnioskowania na temat możliwych skutków wystąpienia danego uszkodzenia czy zdarzenia; Zdolność do wykrywania wielu uszkodzeń (Multiple fault identifiability) Jest to cecha niezwykle pożądana ale bardzo trudna do spełnienia w przypadku dużych systemów; W systemach nieliniowych kolejne uszkodzenia mają wpływ synergetyczny na ich skutki co powoduje trudności w ich rozróżnianiu. Stopień złożoności modeli Czas, nakład pracy a dokładność modeli. Powinien być jak najmniejszy dla konkretnego zastosowania. Wymagania obliczeniowe oraz gromadzenia danych Zdolność do działania w czasie rzeczywistym (operacje numeryczne); Zdolność do gromadzenia danych.

45 Proces diagnozowania: Na podstawie: Venkatasubramanian i inni, 2002 Bardzo ważnymi składnikami procesu diagnozowania są: wiedza a priori o procesie/obiekcie zastosowana technika uczenia/optymalizacji. Generalnie można patrzeć na proces diagnozowania jako na szereg transformacji i odwzorowań dokonywanych na danych pomiarowych

46 Proces diagnozowania: Przestrzeń pomiarów stanowią pomiary x 1, x 2,, x N bez jakiejkolwiek wiedzy a priori o nich; Przestrzeń cech jest przestrzenią punktów y 1, y 2, y i, gdzie y i jest i-tą cechą otrzymaną jako funkcja pomiarów wykorzystująca wiedzę a priori o nich (o rozpatrywanym problemie). Na tym etapie pomiary są przetwarzane z wykorzystaniem wiedzy procesowej, w ten sposób aby, wyciągnąć z niego jak najwięcej użytecznych cech potrzebnych w procesie diagnostyki; Przestrzeń decyzji jest przestrzenią punktów d 1, d 2, d K, gdzie K oznacza liczbę decyzji otrzymanych na podstawie odpowiednich transformacji przestrzeni cech. Transformacja z przestrzeni cech do przestrzeni decyzji jest najczęściej procesem optymalizacji (wynikiem uczenia); Przestrzeń klas jest zbiorem indeksów c 1, c 2,, c M, gdzie M oznacza numer klasy oznaczającej rodzaj uszkodzenia (łącznie ze stanem bezuszkodzeniowym), do której należą analizowane pomiary. Przestrzeń pomiarów (Measurement Space) Przestrzeń cech (Feature Space) Przestrzeń decyzji (Decision Space) Przestrzeń klas (Class Space) [x 1, x 2, x 3,, x N ] [y 1, y 2, y 3,, y i ] [d 1, d 2, d 3,, d K ] [c 1, c 2,, c M ] źródło: Venkatasubramanian i inni, 2002

47 Proces diagnozowania: Tworzenie przestrzeni cech: Wybór cech (Feature selection); Wybieramy najważniejsze (naszym zdaniem) z dostępnych pomiarów; Ekstrakcja cech (Feature extraction) Proces polegający na transformacji przestrzeni pomiarów w przestrzeń cech o mniejszym rozmiarze, np. poprzez odnalezienie jakichś relacji pomiędzy zmiennymi. Jeżeli odnajdziemy takie relacje, dalej w procesie diagnostyki będziemy używać jednej zmiennej zamiast np. 2. do reprezentacji danej zależności. Przestrzeń pomiarów (Measurement Space) Przestrzeń cech (Feature Space) Przestrzeń decyzji (Decision Space) Przestrzeń klas (Class Space) [x 1, x 2, x 3,, x N ] [y 1, y 2, y 3,, y i ] [d 1, d 2, d 3,, d K ] [c 1, c 2,, c M ] źródło: Venkatasubramanian i inni, 2002

48 Przykład: Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Dane są: 4 sensory: x 1, x 2, x 3, x 4 ; 2 klasy uszkodzeń: c 1 oraz c 2, które należy rozróżnić; Załóżmy że uszkodzenie 1 zakłóca czujnik 1 i 2 i że uszkodzenie 2 zakłóca czujnik 2 i 3; Załóżmy, że x 1ss, x 2ss, x 3ss, x 4ss ; oznaczają wartości czujników w stanach ustalonych; Najprostszą transformacją z przestrzeni pomiarów do przestrzeni cech jest pominiecie czujnika x 4 ; Transformacja z przestrzeni cech do przestrzeni decyzji [d 1 d 2 d 3 ] może wyglądać tak: IF abs(y i - x iss )>T THEN d i =1, ELSE d i =0; Ostatnia transformacja z przestrzeni decyzji do przestrzeni klas może wyglądać tak: IF (d1 AND d2) THEN c1 IF (d2 AND d3) THEN c2 Przestrzeń pomiarów (Measurement Space) Przestrzeń cech (Feature Space) Przestrzeń decyzji (Decision Space) Przestrzeń klas (Class Space) [x 1, x 2, x 3, x 4 ] [y 1, y 2, y 3 ] = [x 1, x 2, x 3 ] [d 1, d 2, d 3 ] [c 1, c 2 ] źródło: Venkatasubramanian i inni, 2002

49 Przestrzeń pomiarów, przestrzeń cech - ilustracja: Przestrzeń pomiarów : [x] [x,sin(x)] Przestrzeń cech Zredukowana przestrzeń cech źródło: Nowicki i Grochowski, 2011

50 Etapy procesu diagnozowania: Fazy diagnozowania obiektów (FDD Fault Detection and Diagnosis): Detekcja uszkodzenia (fault detection) Wykrycie, zauważanie powstania uszkodzenia w obiekcie i określenie chwili detekcji. Lokalizacja/wyodrębnienie uszkodzenia (fault isolation) Określenie rodzaju, miejsca i czasu wystąpienia uszkodzenia. Identyfikacja uszkodzenia (fault identification) Określenie rozmiaru i charakteru zmienności uszkodzenia w czasie. (źródło: Korbicz i inni, 2002) Dodatkowo przy sterowaniu odpornym (FTC Fault Tolerant Control) Kompensacja zakłóceń (fault accomodation) Rekonfiguracja systemu sterowania (control reconfiguration)

51 Schemat procesu podejmowania decyzji w FTC: Algorytm sterujący Akomodacja uszkodzeń Diagnostyka uszkodzeń Sterowanie nadzorujące d f r Regulator u OBIEKT y Schemat systemu sterowania tolerującego uszkodzenia

52 Etapy procesu podejmowania decyzji w sterowaniu FTC: Trajektoria referencyjna Wyjście Stan bezuskodzeniowy Czas Trajektoria rzeczywista Moment uszkodzenia Detekcja uszkodzenia Izolacjaidentyfikacja uszkodzenia System pracuje normalnie Nastąpiło uszkodzenie ale nie zostało jeszcze wykryte; System sterowania powinien co najmniej zachować ograniczoność sygnału wyjścia Wykryto uszkodzenie ale nie jest jeszcze znany jego rodzaj i miejsce; Regulator dokonuje rekonfiguracji tak aby odzyskać jak największą jakość sterowania Uszkodzenie zostało wyizolowane i zidentyfikowane; Regulator dokonuje ostatecznej rekonfiguracji; Odzyskuje maksymalną możliwą jakość sterowania.

53 Etapy procesu podejmowania decyzji w sterowaniu FTC: Przykład Pompa P powoduje napływ cieczy q p do Zbiornika 1 (Z1); u(t) określa prędkość pompy; u jest zdeterminowane przez wyłącznik bezpieczeństwa chroniący przed przelewem Z1; Wejściem do systemu są pozycje zaworów V a i V 12 ; W normalnym stanie pracy układu (bezuszkodzeniowym) V a jest zamknięty a zawór V 12 jest używany do sterowania poziomem cieczy w Z2 utrzymywania poziomu na zadanym poziomie; V 12 jest używany do napełnienia i opróżniania Z2, Z1 jest zbiornikiem retencyjnym który jest napełniany do h max (wyłącznik awaryjny wyłącza wtedy pompę); V a jest używany jedynie podczas awarii; Rozważane są dwa typy uszkodzeń: Wyciek z Z1, powodujący q l ; Zablokowanie zaworu V 12 w pozycji zamkniętej. Zbiornik 1 System dwóch zbiorników źródło: Blanke i inni, 2006 Zbiornik 2

54 Problemy: Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Etapy procesu podejmowania decyzji w sterowaniu FTC: Celem sterowania jest utrzymywanie poziomu cieczy w Z2 niezależnie od wystąpienia uszkodzeń; Rozważ możliwości wykrycia uszkodzeń przy różnych wariantach opomiarowania: q M, q M, h 1, h 2 q M, h 1, h 2, q p. Zbiornik 1 Zbiornik 2 Zaproponuj sposób kompensacji uszkodzenia; Zaproponuj sposób rekonfiguracji systemu sterowania. System dwóch zbiorników źródło: Blanke i inni, 2006

55 Etapy procesu podejmowania decyzji w sterowaniu FTC: Detekcja uszkodzenia (Fault detection) Ustalenie czy nastąpiło uszkodzenie i kiedy. Wyodrębnienie uszkodzenia (Fault isolation) Ustalenie która z części systemu jest uszkodzona. Zbiornik 1 Zbiornik 2 Identyfikacja uszkodzenia (Fault identification) Ustalenie np. rozmiaru wycieku (czasu, kształtu ). System dwóch zbiorników źródło: Blanke i inni, 2006

56 Etapy procesu podejmowania decyzji w sterowaniu FTC: Kompensacja uszkodzenia (Fault accomodation) W przypadku wycieku banalne - przy założeniu że pompa ma wystarczającą moc, tylko że. Zbiornik 1 Zbiornik 2 Rekonfiguracja systemu sterowania (Control reconfiguration) W przypadku awarii zaworu musimy użyć zaworu V a. Powinno to nastąpić automatycznie, natychmiast po identyfikacji uszkodzenia. System dwóch zbiorników źródło: Blanke i inni, 2006

57 Klasyfikacja algorytmów diagnostycznych Metody diagnostyki Wykorzystujące modele Wykorzystujące dane pomiarowe

58 Klasyfikacja algorytmów diagnostycznych Schemat diagnozowania z wykorzystaniem modeli procesu U - wejścia F - uszkodzenia PROCES Y - wyjścia Model obiektu Generacja residuów R - Residua Klasyfikator R S Ocena wartości residuów S - Sygnały diagnostyczne Relacja S F Lokalizacja uszkodzeń F - Uszkodzenie źródło: Korbicz i inni, 2002

59 Klasyfikacja algorytmów diagnostycznych Schemat diagnozowania z detekcją bez wykorzystania modeli procesu U - wejścia F - uszkodzenia PROCES Y - wyjścia Klasyfikator UUY S Generacja sygnałów diagnostycznych S - Sygnały diagnostyczne Relacja S F Lokalizacja uszkodzeń F - Rodzaje uszkodzeń źródło: Korbicz i inni, 2002

60 Klasyfikacja algorytmów diagnostycznych Diagnostyka jako proces rozpoznawania wzorców F - uszkodzenia U - wejścia PROCES Y - wyjścia X zmienne procesowe Ekstrakcja sygnałów diagnostycznych Sygnały diagnostyczne Obrazy wzorcowe dla uszkodzeń Klasyfikacja Rodzaje uszkodzeń źródło: Korbicz i inni, 2002

61 Przykład detekcja i identyfikacja uszkodzeń łożysk tocznych silnika indukcyjnego źródło: Use of neural networks in diagnostics of rolling-element bearing of the induction motor. L.Swędrowski, K.Duzinkiewicz,M.Grochowski,T.Rutkowski. V Międzynarodowy Kongres Diagnostyki Technicznej Kraków Przykłady uszkodzeń łożysk

62 i [A] i [A] i c [A] i [A] i b [A] i a [A] Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Diagnostyka jako proces rozpoznawania wzorców Przykład detekcja i identyfikacja uszkodzeń łożysk tocznych silnika indukcyjnego 2 i a (t) t [sec] i (t) b i (t) t [sec] i (t) c t [sec] Prądy zasilania silnika trójfazowego t [sec] i (t) t [sec] Clark vector curve i = f(i ) Transformacja Clarka i [A] Wektory Clarka

63 i [A] i [A] i [A] Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Diagnostyka jako proces rozpoznawania wzorców Przykład detekcja i identyfikacja uszkodzeń łożysk tocznych silnika indukcyjnego Clark vector curve i = f(i ) Uszkodzenie pierścienia wewnętrznego Clark vector curve i = f(i ) i [A] Uszkodzenie kulki Uszkodzenie pierścienia zewnętrznego Clark vector curve i = f(i ) i [A] i [A]

64 i [A] Sterowania Automatyka - zastosowania, metody i narzędzia, perspektywy Diagnostyka jako proces rozpoznawania wzorców Przykład detekcja i identyfikacja uszkodzeń łożysk tocznych silnika indukcyjnego Neuronowy system diagnostyczny 2.5 Clark vector curve i = f(i ) i [A] Wektory Clarka Sztuczna sieć neuronowa Nieuszkodzone Uszkodzone Uszkodzenie wewnętrznego łożyska Uszkodzenie zewnętrznego łożyska Uszkodzenie kulki

65 Diagnostyka jako proces rozpoznawania wzorców Przykład detekcja i identyfikacja uszkodzeń łożysk tocznych silnika indukcyjnego Neuronowy system diagnostyczny Dane wejściowe (Wektory Clarka) Silnik indukcyjny wyjścia (wskaźnik uszkodzenia<-1, 1>) Model neuronowy 0 sprawny silnik Model neuronowy 1 uszkodzenie pierścienia zewnętrznego Model neuronowy 2 uszkodzenie pierścienia wewnętrznego Model neuronowy 3 uszkodzenie kulki

66 Klasyfikacja algorytmów diagnostycznych Metody diagnostyki Wykorzystujące modele Wykorzystujące dane pomiarowe Ilościowe Jakościowe Jakościowe Ilościowe Obserwatory EKF Przyczynowo skutkowe Abstraction hierarchy Sieci neuronowe Parity Space Digrafy Qualitative Physics Systemy ekspertowe QTA Qualitative trend analysis Statystyczne Drzewa uszkodzeń Strukturalne Funkcjonalne PCA/PLS Klasyfikatory statystyczne źródło: Venkatasubramanian i inni, 2002

67 Klasyfikacja algorytmów diagnostycznych: Metody ilościowe wykorzystujące modele Obserwatory Filtry Kalmana Parity Space

68 Metody ilościowe wykorzystujące modele Parity space (Parity equations równania zgodności) Podejście wykorzystujące obserwatory i/lub Filtry Kalmana Podejście poprzez estymację parametrów

69 Metody ilościowe wykorzystujące modele Banki obserwatorów Urządzenia wykonawcze Proces Czujniki pomiarowe Obserwator 1 Obserwator 2 Decyzje logiczne Obserwator n

70 Metody ilościowe wykorzystujące modele Podsumowanie: W diagnostyce stosuje się modele typu wejście-wyjście, modele w przestrzeni stanu, modele fenomenologiczne, modele częstotliwościowe Modele fenomenologiczne są rzadko używane ze względu na trudności z uzyskaniem odpowiednio dokładnych modeli i z dużym obciążeniem obliczeniowym przy ich wykorzystaniu; Najbardziej popularnymi modelami w tej grupie są modele wejście-wyjście oraz modele w przestrzeni stanu; Posiadając model, najczęściej w procesie diagnozowania występują dwa kroki: Generacja residuów (redundancja analityczna ); Wybór odpowiedniej reguły podejmowania decyzji. W stanie bezuszkodzeniowej pracy systemu, residua powinny oscylować wokół zera. Wystąpienie uszkodzenia zmienia relacje pomiędzy zmiennymi co powoduje powstanie niezerowych wartości residuów; Wykorzystywane modele mogą być typu white box lub black box co implikuje późniejszą zdolność do izolacji uszkodzeń; Większość modeli diagnostycznych jest liniowa lub wymaga linearyzacji w punkcie pracy.

71 Ogólna charakterystyka modeli i ich wykorzystania do diagnostyki: Podsumowanie: Schematy diagnozowania w tym podejściu najczęściej sprowadzają się do estymacji zmiennych stanu i parametrów, filtracji, adaptacyjnej filtracji itp. Często tworzone są banki obserwatorów przystosowanych do wykrywania konkretnego uszkodzenia; Najbardziej efektywnymi modelami wydają się być Filtry Kalmana (rozszerzone); Najważniejszą zaletą podejścia z wykorzystaniem modeli ilościowych jest fakt iż posiadamy duża kontrolę i przejrzystość procesu diagnozowania; Największą wadą jest praktyczna ograniczoność do modeli liniowych i pewnej klasy modeli nieliniowych.

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Metody i narzędzia diagnostyki procesów dr inż. Michał Grochowski m.grochowski@eia.pg.gda.pl

Bardziej szczegółowo

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska Jan Maciej Kościelny, Michał Syfert DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych Instytut Automatyki i Robotyki Plan wystąpienia 2 Wprowadzenie

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Metrologia: organizacja eksperymentu pomiarowego

Metrologia: organizacja eksperymentu pomiarowego Metrologia: organizacja eksperymentu pomiarowego (na podstawie: Żółtowski B. Podstawy diagnostyki maszyn, 1996) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Teoria eksperymentu: Teoria eksperymentu

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 2 Panel nt. Produkt oraz materiał

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Wykrywanie twarzy na zdjęciach przy pomocy kaskad

Wykrywanie twarzy na zdjęciach przy pomocy kaskad Wykrywanie twarzy na zdjęciach przy pomocy kaskad Analiza i przetwarzanie obrazów Sebastian Lipnicki Informatyka Stosowana,WFIIS Spis treści 1. Wstęp... 3 2. Struktura i funkcjonalnośd... 4 3. Wyniki...

Bardziej szczegółowo

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński Katowice GPW 2013 Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową Jan Studziński 1 1. Wstęp Cel pracy Usprawnienie zarządzania siecią wodociągową za pomocą nowoczesnych

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

GRUNDFOS WATER UTILITY INTELIGENTNY SYSTEM DYSTRYBUCJI

GRUNDFOS WATER UTILITY INTELIGENTNY SYSTEM DYSTRYBUCJI INTELIGENTNY SYSTEM DYSTRYBUCJI Rozwiązania Grundfos ograniczające straty wody i zużycie energii w sieciach wodociągowych. Andrzej Kiełbasa Gdzie jest duży potencjał do uzyskania oszczędności? Straty Oszczędności

Bardziej szczegółowo

Problematyka budowy skanera 3D doświadczenia własne

Problematyka budowy skanera 3D doświadczenia własne Problematyka budowy skanera 3D doświadczenia własne dr inż. Ireneusz Wróbel ATH Bielsko-Biała, Evatronix S.A. iwrobel@ath.bielsko.pl mgr inż. Paweł Harężlak mgr inż. Michał Bogusz Evatronix S.A. Plan wykładu

Bardziej szczegółowo

Pojazdy przeciążone zagrożeniem dla trwałości nawierzchni drogowych: metody przeciwdziałania

Pojazdy przeciążone zagrożeniem dla trwałości nawierzchni drogowych: metody przeciwdziałania Pojazdy przeciążone zagrożeniem dla trwałości nawierzchni drogowych: metody przeciwdziałania Prof. dr hab. inż. Leszek Rafalski Mgr inż. Michał Karkowski II WARMIŃSKO-MAZURSKIE FORUM DROGOWE LIDZBARK WARMIŃSKI

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw KATEDRA AUTOMATYKI kierownik katedry: dr hab. inż. Kazimierz Kosmowski, prof. nadzw. PG tel.: 058 347-24-39 e-mail: kazkos@ely.pg.gda.pl adres www: http://www.ely.pg.gda.pl/kaut/ Systemy sterowania w obiektach

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zarządzanie ruchem przy pomocy technologii informatycznych

Zarządzanie ruchem przy pomocy technologii informatycznych Zarządzanie ruchem przy pomocy technologii informatycznych Piotr Olszewski Politechnika Warszawska Informatyka w zarządzaniu drogami zastosowania praktyczne Polski Kongres Drogowy, Stowarzyszenie ITS Polska

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE

S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE KATEDRA SYSTEMÓW DECYZYJNYCH POLITECHNIKA GDA N SKA S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE prof. dr hab. inz. Zdzisław Kowalczuk Katedra Systemów Decyzyjnych Wydział Elektroniki Telekomunikacji

Bardziej szczegółowo

Zasady organizacji projektów informatycznych

Zasady organizacji projektów informatycznych Zasady organizacji projektów informatycznych Systemy informatyczne w zarządzaniu dr hab. inż. Joanna Józefowska, prof. PP Plan Definicja projektu informatycznego Fazy realizacji projektów informatycznych

Bardziej szczegółowo

Systemy zabezpieczeń

Systemy zabezpieczeń Systemy zabezpieczeń Definicja System zabezpieczeń (safety-related system) jest to system, który implementuje funkcje bezpieczeństwa konieczne do utrzymania bezpiecznego stanu instalacji oraz jest przeznaczony

Bardziej szczegółowo

FMEA. Tomasz Greber tomasz@greber.com.pl. Opracował: Tomasz Greber (www.greber.com.pl)

FMEA. Tomasz Greber tomasz@greber.com.pl. Opracował: Tomasz Greber (www.greber.com.pl) FMEA Tomasz Greber tomasz@greber.com.pl FMEA MYŚLEĆ ZAMIAST PŁACIĆ Dlaczego FMEA? Konkurencja Przepisy Normy (ISO 9000, TS 16949 ) Wymagania klientów Powstawanie i wykrywanie wad % 75% powstawania wad

Bardziej szczegółowo

EKSPLOATACJA DRÓG. Praca zbiorowa pod kierunkiem Leszka Rafalskiego

EKSPLOATACJA DRÓG. Praca zbiorowa pod kierunkiem Leszka Rafalskiego EKSPLOATACJA DRÓG Praca zbiorowa pod kierunkiem Leszka Rafalskiego Warszawa 2011 STUDIA I MATERIAŁY - zeszyt 65 SPIS TREŚCI Streszczenie/Summary... 3/4 1. WSTĘP... 11 2. PRZEPISY PRAWNE I WYMAGANIA TECHNICZNE

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Aktory

Mechatronika i inteligentne systemy produkcyjne. Aktory Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck

Bardziej szczegółowo

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113 Spis treści Wstęp 11 1. Rozwój robotyki 15 Rys historyczny rozwoju robotyki 15 Dane statystyczne ilustrujące rozwój robotyki przemysłowej 18 Czynniki stymulujące rozwój robotyki 23 Zakres i problematyka

Bardziej szczegółowo

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR

ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR TECHNIK MECHATRONIK ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR 2 os. SZKOLNE 26 31-977 KRAKÓW www.elektryk2.i365.pl Spis treści: 1. Charakterystyka zawodu 3 2. Dlaczego technik mechatronik? 5 3. Jakie warunki musisz

Bardziej szczegółowo

OFERTA PRACY DYPLOMOWEJ

OFERTA PRACY DYPLOMOWEJ Poszukiwanie optymalnych rozwiązań zastosowania w systemie ciepłowniczym źródeł odnawialnych wspomagających lokalnie pracę sieci. Celem pracy dyplomowej jest poszukiwanie miejsc systemu ciepłowniczego,

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

ROZWIĄZANIA WIZYJNE PRZEMYSŁOWE. Rozwiązania WIZYJNE. Capture the Power of Machine Vision POZYCJONOWANIE IDENTYFIKACJA WERYFIKACJA POMIAR DETEKCJA WAD

ROZWIĄZANIA WIZYJNE PRZEMYSŁOWE. Rozwiązania WIZYJNE. Capture the Power of Machine Vision POZYCJONOWANIE IDENTYFIKACJA WERYFIKACJA POMIAR DETEKCJA WAD POZYCJONOWANIE IDENTYFIKACJA WERYFIKACJA POMIAR DETEKCJA WAD PRZEMYSŁOWE ROZWIĄZANIA WIZYJNE Capture the Power of Machine Vision Sensors Cameras Frame Grabbers Processors Software Vision Solutions Informacje

Bardziej szczegółowo

Rozwiązanie dla standardowych urządzeń...

Rozwiązanie dla standardowych urządzeń... Rozwiązanie dla standardowych urządzeń... PROCESS FIELD BUS Page 1 PROFIBUS i SIMATIC pozwala osiągnąć Obniżenie kosztów okablowania Łatwy wybór produktu Łatwość instalacji i uruchomienia Krótki czas rozruchu

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Przemysłowe Sieci Informatyczne

Przemysłowe Sieci Informatyczne Przemysłowe Sieci Informatyczne Wykład #2 - Charakterystyka sieci przemysłowych dr inż. Jarosław Tarnawski Co to jest przemysłowa sieć informatyczna? To sieć teleinformatyczna umożliwiająca komunikację

Bardziej szczegółowo

Zintegrowana platforma zarządzania miastem w kontekście bezpieczeństwa publicznego. (Centrum Bezpieczeństwa Miasta)

Zintegrowana platforma zarządzania miastem w kontekście bezpieczeństwa publicznego. (Centrum Bezpieczeństwa Miasta) Zintegrowana platforma zarządzania miastem w kontekście bezpieczeństwa publicznego (Centrum Bezpieczeństwa Miasta) Gdańsk 2014 Atena Partnerem 2013 Spis treści 1 Cechy zintegrowanej platformy zarządzania

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model

Bardziej szczegółowo

DIAGNOSTYKA TERMOWIZYJNA W ENERGETYCE JAKO METODA ZAPOBIEGANIA AWARIOM

DIAGNOSTYKA TERMOWIZYJNA W ENERGETYCE JAKO METODA ZAPOBIEGANIA AWARIOM DIAGNOSTYKA TERMOWIZYJNA W ENERGETYCE JAKO METODA ZAPOBIEGANIA AWARIOM Plan prezentacji Informacje o firmie Euro Pro Group Oferowane szkolenia Jak działa kamera? Zalety badań termowizyjnych Przykładowe

Bardziej szczegółowo

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie 9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Automatyki Kazimierz Kosmowski k.kosmowski@ely.pg.gda.pl Opracowanie metod analizy i narzędzi do komputerowo wspomaganego zarządzania bezpieczeństwem

Bardziej szczegółowo

Wsparcie dla działań na rzecz poprawy efektywności energetycznej ze strony systemów informatycznych

Wsparcie dla działań na rzecz poprawy efektywności energetycznej ze strony systemów informatycznych Wsparcie dla działań na rzecz poprawy efektywności energetycznej ze strony systemów informatycznych Potencjał efektywności energetycznej w przemyśle Seminarium Stowarzyszenia Klaster 3x20 Muzeum Górnictwa

Bardziej szczegółowo

Bibliografia...210. xiii

Bibliografia...210. xiii Spis treści 1. Wprowadzenie J. M. Kościelny.... 1 1.1. Struktury systemów sterowania........1 1.2. Kierunki rozwoju współczesnych systemów automatyki...5 1.3. Nowe funkcje zaawansowanych systemów automatyki...

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

Instrukcja obsługi AP3.8.4 Adapter portu LPT

Instrukcja obsługi AP3.8.4 Adapter portu LPT Instrukcja obsługi AP3.8.4 Adapter portu LPT P.P.H. WObit E.K.J. Ober s.c. 62-045 Pniewy, Dęborzyce 16 tel.48 61 22 27 422, fax. 48 61 22 27 439 e-mail: wobit@wobit.com.pl www.wobit.com.pl SPIS TREŚCI

Bardziej szczegółowo

Wstęp. osobniczo, takich jak odciski linii papilarnych, wygląd tęczówki oka, czy charakterystyczne cechy twarzy.

Wstęp. osobniczo, takich jak odciski linii papilarnych, wygląd tęczówki oka, czy charakterystyczne cechy twarzy. 1. Wstęp. Dynamiczny rozwój Internetu, urządzeń mobilnych, oraz komputerów sprawił, iż wiele dziedzin działalności człowieka z powodzeniem jest wspieranych przez dedykowane systemy informatyczne. W niektórych

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna SEIwE- sem.4

Automatyka i Regulacja Automatyczna SEIwE- sem.4 Automatyka i Regulacja Automatyczna SEIwE- sem.4 Wykład 30/24h ( Lab.15/12h ) dr inż. Jan Deskur tel. 061665-2735(PP), 061 8776135 (dom) Jan.Deskur@put.poznan.pl (www.put.poznan.pl\~jan.deskur) Zakład

Bardziej szczegółowo

System monitorowania jakości energii elektrycznej w TAURON Dystrybucja S.A.

System monitorowania jakości energii elektrycznej w TAURON Dystrybucja S.A. System monitorowania jakości energii elektrycznej w TAURON Dystrybucja S.A. AGENDA Dlaczego jakość energii jest ważna Cele i korzyści wdrożenia systemu monitorowania jakości energii elektrycznej (SMJEE)

Bardziej szczegółowo

Słowo mechatronika powstało z połączenia części słów angielskich MECHAnism i electronics. Za datę powstania słowa mechatronika można przyjąć rok

Słowo mechatronika powstało z połączenia części słów angielskich MECHAnism i electronics. Za datę powstania słowa mechatronika można przyjąć rok Słowo mechatronika powstało z połączenia części słów angielskich MECHAnism i electronics. Za datę powstania słowa mechatronika można przyjąć rok 1969, gdy w firmie Yasakawa Electronic z Japonii wszczęto

Bardziej szczegółowo

Data Mining w doborze parametrów układu testującego urządzenia EAZ 1

Data Mining w doborze parametrów układu testującego urządzenia EAZ 1 Rozdział 6 Data Mining w doborze parametrów układu testującego urządzenia EAZ 1 Streszczenie. W rozdziale został zaproponowany sposób doboru parametrów układu testującego urządzenia elektroenergetycznej

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Przemysł samochodowy stawia najwyższe wymagania jakościowe w stosunku

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Modele i metody automatyki

Modele i metody automatyki Modele i metody automatyki Dr inż. Wiesław Madej Wstęp Modele i metody automatyki 30 h wykład 15 h ćwiczenia Konsultacje: - pokój 325A - środa 11 14 - piątek 11-14 Literatura T. Kaczorek Teoria sterowania

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Modelowanie biomechaniczne Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Zakres: Definicja modelowania Modele kinematyczne ruch postępowy, obrotowy, przemieszczenie,

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Temat: Sondy pojemnościowe nowoczesnym elementem do regulacji poziomu cieczy w aparatach instalacji chłodniczych.

Temat: Sondy pojemnościowe nowoczesnym elementem do regulacji poziomu cieczy w aparatach instalacji chłodniczych. POLITECHNIKA GDAŃSKA Wydział Mechaniczny Katedra Techniki Cieplnej SEMINARIUM Z PRZEDMIOTU AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA Temat: Sondy pojemnościowe nowoczesnym elementem do regulacji poziomu cieczy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości Seria Jubileuszowa Każda sprężarka śrubowa z przetwornicą częstotliwości posiada regulację obrotów w zakresie od 50 do 100%. Jeżeli zużycie powietrza

Bardziej szczegółowo

UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII. Mgr inż. Adam Tarłowski TAKOM Sp. z o.o.

UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII. Mgr inż. Adam Tarłowski TAKOM Sp. z o.o. - 1 UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII Mgr inż. Adam Tarłowski TAKOM Sp. z o.o. Firma TAKOM założona w 1991r jest firmą inżynierską specjalizującą się w technice automatyki napędu

Bardziej szczegółowo

Przykładowe działania systemu R-CAD

Przykładowe działania systemu R-CAD Przykładowe działania systemu R-CAD 1 Osoba opuszczająca obiekt zazbraja system alarmowy błędnym kodem Sygnał nieuprawnionego uzbrojenia wysyłany do modułu I/0 Wykrycie obiektu w zaznaczonej strefie badanej

Bardziej szczegółowo

Ultradźwiękowy miernik poziomu

Ultradźwiękowy miernik poziomu j Rodzaje IMP Opis Pulsar IMP jest ultradźwiękowym, bezkontaktowym miernikiem poziomu. Kompaktowa konstrukcja, specjalnie zaprojektowana dla IMP technologia cyfrowej obróbki echa. Programowanie ze zintegrowanej

Bardziej szczegółowo

Konkurencyjność polskiej gospodarki na tle krajów unijnych

Konkurencyjność polskiej gospodarki na tle krajów unijnych Konkurencyjność polskiej gospodarki na tle krajów unijnych Dr Magdalena Hryniewicka Uniwersytet Kardynała Stefana Wyszyńskiego, Zakład Ekonomii Plan wystąpienia Cel Definicje konkurencyjności w literaturze

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

Postęp w rozwoju wodomierzy domowych DN15-40

Postęp w rozwoju wodomierzy domowych DN15-40 Postęp w rozwoju wodomierzy domowych DN15-40 Technologia pomiaru zużycia wody Część 2 - Wodomierze statyczne Piotr Lewandowski, Sensus Polska WODOMIERZE STATYCZNE 2 dominujące technologie w krajach UE

Bardziej szczegółowo

PRZEDMIOTY STUDIÓW STACJONARNYCH II STOPNIA

PRZEDMIOTY STUDIÓW STACJONARNYCH II STOPNIA PRZEDMIOTY STUDIÓW STACJONARNYCH II STOPNIA Tabela 1-1 Matematyka - Metody numeryczne 30 15 4 2a 2b Teoria sterowania (kierunek AUTOMATYKA i ROBOTYKA) Systemy mikroprocesorowe w mechatronice (kierunek

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Inteligentny czujnik w strukturze sieci rozległej

Inteligentny czujnik w strukturze sieci rozległej Inteligentny czujnik w strukturze sieci rozległej Tadeusz Pietraszek Zakopane, 13 czerwca 2002 Plan prezentacji Problematyka pomiarów stężenia gazów w obiektach Koncepcja realizacji rozproszonego systemu

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Zastosowania mikrokontrolerów w przemyśle

Zastosowania mikrokontrolerów w przemyśle Zastosowania mikrokontrolerów w przemyśle Cezary MAJ Katedra Mikroelektroniki i Technik Informatycznych Literatura Ryszard Pełka: Mikrokontrolery - architektura, programowanie, zastosowania Projektowanie

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

II. STEROWANIE I REGULACJA AUTOMATYCZNA

II. STEROWANIE I REGULACJA AUTOMATYCZNA II. STEROWANIE I REGULACJA AUTOMATYCZNA 1. STEROWANIE RĘCZNE W UKŁADZIE ZAMKNIĘTYM Schemat zamkniętego układu sterowania ręcznego przedstawia rysunek 1. Centralnym elementem układu jest obiekt sterowania

Bardziej szczegółowo