FJ7. Wstęp. 1. Co to jest radon? FIZYKA JĄDROWA

Wielkość: px
Rozpocząć pokaz od strony:

Download "FJ7. Wstęp. 1. Co to jest radon? FIZYKA JĄDROWA"

Transkrypt

1 1 II PRACOWNIA FIZYCZNA: WYZNACZANIE STĘŻENIA RADONU W POMIESZCZENIACH ZAMKNIĘTYCH Irena Jankowska - Sumara Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stężenia radonu w trzech róż nych pomieszczeniach budynku: w piwnicy, w pomieszczeniach pracowni i na V piętrze (w sekretariacie Instytutu). W celu wyliczenia stężenia radonu w poszczególnych pomieszczeniach korzystamy ze współczynnika kalibracji wyznaczonego przy użyciu źródła radonu o znanej aktywności. Zagadnienia do opracowania 1. Rozpad promieniotwórczy. Prawa, rodzaje rozpadu, czas połowicznego zaniku. 2. Aktywność źródła promieniotwórczego. 3. Rodziny promieniotwórcze. Aktywność. Zalecana literatura 1) A. Strzałkowski - Wstęp do fizyki jądra atomowego, PWN ) I.W. Sawieliew - Kurs fizyki t.3, PWN W-wa ) M. Siemiński - Fizyka zagrożeń środowiska, PWN, W -wa ) Promieniotwórczy radon, Państwowa Agencja Atomistyki, W -wa ) 6)

2 2 II PRACOWNIA FIZYCZNA: Wstęp 1. Co to jest radon? W skorupie ziemskiej można znaleźć śladowe ilości izotopów promieniotwórczych, których czas połowicznego zaniku jest porównywalny z wiekiem Ziemi (ok.10 9 lat) oraz izotopy promieniotwórcze, które są ich produktami rozpadu. Do najważ niejszych izotopów nalezą U- 238 i Th-232, które dają początek rodzinie uranowej i torowej. W każdej z nich występuje po kilkanaście izotopów różnych pierwiastków wśród których są również izotopy radonu. Obydwie rodziny promieniotwórcze są przedstawione na Rys.1. a)

3 3 II PRACOWNIA FIZYCZNA: b) Rys. 1. Szereg uranowy (a) i torowy (b). Wszystkie izotopy należące do nich występują w przyr odzie w postaci ciał stałych, z wyjątkiem radonu, który występuje w postaci gazowej. Radon jest pierwiastkiem promieniotwórczym o liczbie atomowej 86, należącym do grupy helowców. Jest najcięższym gazem szlachetnym, bezbarwnym, bezwonnym i bez smaku. Dobrze rozpuszcza się w wodzie, słabo w rozpuszczalnikach organicznych i amoniaku. Oziębiony poniżej temperatury krzepnięcia tworzy nieprzezroczyste kryształy i świeci brylantowo-niebieskim światłem. Tab. 1 Właściwości fizyczne radonu. temperatura topnienia -71 o C temperatura wrzenia -68 o C gęstość gazu (warunki normalne) 9,73 g/dm 3 gęstość cieczy w temp. wrzenia 4,4 g/cm 3 gęstość ciała stałego 4,0 g/cm 3

4 4 II PRACOWNIA FIZYCZNA: Obecnie znanych jest 30 izotopów tego pierwiastka o lic zbach masowych od 198 do 227, a zatem zawierających w jądrze 86 protonów i od 112 do 141 neutronów. Wszystkie izotopy radonu są promieniotwórcze, o różnych okresach półrozpadu: od mikrosekund do kilku dni. Większość z nich jest wytworzona sztucznie, a jedynie 3 występują naturalnie w przyrodzie. 223 Ra 219 Rn T1/2=4s 224 Ra 220 Rn T1/2=58s 226 Ra 222 Rn T1/2=3,8d Ze względu na krótki czas połowicznego zaniku dwa pierwsze izotopy nie stanowią zagrożenia z biologicznego punktu widzenia. Powstają one z ciężkich pierwiastków zawartych w skałach, w wyniku następujących po sobie rozpadów typu alfa lub beta. Kolejne produ kty tych przemian tworzą tzw. szereg promieniotwórczy. Szereg taki rozpoczyna się długożyciowym izotopem promieniotwórczym, a kończy izotopem trwałym. Znane są 4 szeregi, z czego 3 występują naturalnie w przyrodzie: 1) torowy - rozpoczyna się 232 Th. W szeregu tym powstaje 220 Rn zwany dawniej emanacją torową lub toronem, o okresie półrozpadu 54,5s. 2) uranowo-aktynowy - rozpoczyna się 235 U. W szeregu tym powstaje 219 Rn zwany emanacją aktynową lub aktynonem, o okresie półrozpadu 3,9s. 3) uranowo-radowy - rozpoczyna się 238 U. W szeregu tym powstaje 222 Rn w wyniku rozpadu alfa izotopu radu 226 Ra. Z tego powodu nazwano go emanacją radową lub radonem (po odkryciu, że toron, aktynon i radon to izotopy tego samego pierwiastka, nazwę radon rozszerzono na wszystkie izotopy). M a on najdłuższy okres półrozpadu wynoszący 3,823 dnia. Rys. 2. Przemieszczanie się radonu w glebie.

5 5 II PRACOWNIA FIZYCZNA: Wędrówkę radonu z gleby do atmosfery można podzielić na dwa etapy: 1) uwalnianie się radonu z ziaren i skał do pęknięć i szczelin, 2) migracja uwolnionego radonu do powietrza atmosferycznego. ad 1. powstający w wyniku rozpadu radu-226 radon-222 uzyskuje energię około 90keV pozwalająca na wydostanie się z ziaren mineralnych do szczelin w porowatym środowisku gleby lub skał. Stężenie radonu w skorupie ziemskie j waha się w granicach 7-200kBq/m 3 i zależy silnie od budowy geologicznej. Największe stężenia notuje się w przypadku granitów. ad 2. Migracja radonu może odbywać się na różnych drogach: a) poprzez dyfuzję b) poprzez konwekcję (radon przemieszcza się z masą p owietrza) c) z wodą - łatwo się w niej rozpuszcza d) z gazem ziemnym i z metanem. Wszystkie te sposoby transportu mogą być spotęgowane przez ruchy tektoniczne, w wyniku których może dojść do powiększenia lub powstania nowych szczelin. Wzrost stężenia radonu w glebie jest wykorzystywany w prognozowaniu trzęsień Ziemi. Radon w atmosferze. Głównym źródłem radonu atmosferycznego jest gleba. Stężenie radonu w atmosferze zależy od rodzaju gleby, ale także od panującego ciśnienia, temperatury, od siły i kierunku wiatru i innych parametrów wpływających na warunki klimatyczne. Średnie stężenie radonu w dolnych warstwach atmosfery wynosi około 10Bq/m 3. Bekerel, 1 Bq - jednostka aktywności promieniotwórczej preparatu. 1 Bq odpowiada zachodzeniu jednego rozpadu promieniotwórczego w ciągu 1 sekundy. 1 Bq 222 Rn odpowiada 1,7-16 g tego gazu. Radon w budynkach mieszkalnych Głównym źródłem radonu w pomieszczeniach i budynkach jest gleba bezpośrednio przylegająca do fundamentów. Różnica temperatur miedzy budynkiem, a glebą powoduje wysysanie radonu z gruntu. Z pomiarów wynika, że wraz ze wzrostem wysokości kondygnacji, maleje stężenie radonu pochodzącego z gleby. Innym źródłem radonu może być używany w gospodarstwach domowych gaz ziemny, a także woda. Średnie stężenia radonu w mieszkaniach wahają się na świecie w bardzo szerokim przedziale. Z dotychczasowych, niepełnych badań wykonanych w Polsce wynika, że średnie stężenie wynosi około 50Bq/m 3. Łatwo zauważyć, że stężenie radonu w pomieszczen iach jest większe od stężenia

6 6 II PRACOWNIA FIZYCZNA: w powietrzu atmosferycznym. Istnieją obszary położone w województwach jeleniogórskim i wałbrzyskim, gdzie prawdopodobieństwo znalezienia domów o stężeniach przekraczających 200 Bq/m 3 jest znacznie wyższe niż w pozostałej części kraju. Rys. 3. Drogi przenikania Radonu do budynku. W warunkach klimatycznych Polski występuje bardzo widoczny wpływ pór roku na stężenie radonu w budynkach. Jest to spowodowane częstszym otwieraniem okien w porze letniej. Oddziaływanie pochodnych radonu ze składnikami powietrza W wyniku konkurencyjnych procesów wnikania i usuwania ustala się pewien poziom stężenia radonu. Radon jako gaz szlachetny nie reaguje ze składnikami powietrza, a jedynie rozpada się poprzez rozpad alfa. Produkty rozpadu radonu zachowują się zup ełnie odmiennie. - Powstały w wyniku rozpadu Po -218 występuje z reguły jako jon dodatni. Łączy się z cząsteczkami gazów i pary wodnej tworząc maleńkie zbitki, które w czasie 0.1s rekombinują z jonami ujemnie naładowanymi. Część atomów polonu pozostaje nie związana. - W drugim etapie trwającym s pewien procent zbitek przyczepia się do zawartych w powietrzu pyłów o typowej średnicy nm, tworząc promieniotwórcze aerozole. Część zbitek pozostaje nie przyczepiona. -Obie frakcje, zarówno cząsteczki nie przyczepione do aerozoli, jak i radioaktywne aerozole wędrują z ruchami powietrza. Część z nich osadza się na ścianach pomieszczenia, zaś część jest wdychana do płuc.

7 7 II PRACOWNIA FIZYCZNA: -Równolegle z wyżej omówionymi procesami następują rozpady promieniotwórcze i powstają kolejne izotopy: Pb-214, Bi-214, Po-214, Pb-210 itd. (rys.1). Ich los jest podobny do losu Po-218. Ryzyko zdrowotne Powietrze atmosferyczne zawiera bardzo dużo zawieszonych w nim pyłów o rozmiarach od około 0.001m do dziesiątków mikrometrów. Pochodne radonu występują w powietrzu w postaci związanej z pyłami i aerozolami albo jako wolne radioaktywne cząsteczki. Ilość związanych produktów zależy w dużym stopniu od stężen ia i rodzaju pyłów i aerozoli w powietrzu takich jak na przykład dym tytoniowy. W procesie oddychania powietrze wraz z radonem i zawieszonymi pyłami jest zasysane przez nos lub usta do płuc. Pyły o największej średnicy (ponad 1m) zatrzymywane są w nosie i krtani, natomiast w oskrzelach osadzają się pyły o mniejszych średnicach tj. od 0.1-1m. Po czasie około 1s gazy, a więc powietrze i radon jest usuwane na zewnątrz, natomiast pyły, a wraz z nimi produkty rozpadu radonu osadzają się w płucach na śluzie, którymi pokryte są wewnętrzne ściany dróg oddechowych. Osadzanie to zachodzi w największym stopniu przy rozgałęzieniach oskrzeli. Pyły wraz z pochodnymi przebywają w miejscu osadzenia przez okres wielu godzin lub dni, a więc znacznie dłużej niż wynosi ich okres półrozpadu. Rozpad pochodnych radonu na ściankach płuc i oskrzeli ma zasadniczy udział w wielkości dawki na którą narażone są drogi oddechowe. Sam Radon-222 wnosi nieznaczny wkład do tej dawki dlatego, że w postaci gazowej nie przyczepia się do ścian układu i usuwany jest stosunkowo szybko z organizmu. Działanie promieniowania Z punktu widzenia skutków biologicznych szczególnie szkodliwe są cząstki alfa. Przyczyną tego jest ogromna gęstość jonizacji. Cząstka alfa obdarzona jest dodatnim ładunkiem elektrycznym, dwukrotnie większym od ładunku elektronu, a masa jej jest około 8000 raz y większa od masy elektronu. Cząstka alfa o energii kilku MeV traci całą tę energię w tkance na drodze o długości kilkudziesięciu mikrometrów. Promienie jonizujące działają szkodliwie na organizmy żywe, gdyż w wyniku jonizacji zostają zapoczątkowane reakcje chemiczne, powodujące m.in. poważne zmiany w budowie substancji organicznych komórki, decydujących o jej życiu i roz woju, w wyniku czego zachodzą w organizmie poważne zmiany uszkadzające. Jonizacja wywołuje zaburzenia biochemiczne spowodowane zmianą składu chemicznego i mechanizmu przemiany materii. Stwierdzono upośledzone wchłanianie tłuszczu z przewodu pokarmowego, zaburzenia w przemianie białkowej, szybkie unieczynnienie się niektórych enzymów i wzrost aktywności innych, upośledzoną syntezę kwasu dezoksyrybonukleinowego, jednego z podstawowych składników wszystkich komórek. Jest ono szczególnie szkodliwe dla krwi, komórek narząd ów rozrodczych i komórek młodych. Może wywoływać złośliwienie procesów rozmnażania komórek, prowadzące do powstawania nowotworów złośliwych, np. raka skóry, kości lub narządów wewnętrznych. Promienie alfa, beta, gamma wywołują również oparzenia skóry,

8 8 II PRACOWNIA FIZYCZNA: podobne do termicznych, z takimi objawami, jak rumień, pęcherze i martwica, ale znacznie trudniejsze do wygojenia. Rys. 4. Źródła promieniowania jonizującego występujące w otaczającym nas środowisku i ich wkład do średniej rocznej dawki efektywnej wg [M.Biernacka, Radiologiczny atlas Polski 2005, Główny Inspektorat Ochrony Środowiska, 2006]. Metody pomiaru stężenia Radonu Aby ustalić poziom radonu w danym miejscu należy zmierzyć stężenie radonu w powietrzu wewnątrz pomieszczeń. Pomiaru stężenia radonu dokonuje się często za pomocą niewielkich czujników wykonanych z tworzyw sztucznych, które umieszcza się w domu na okres kil ku tygodni, aby prawidłowo zmierzyć średnie stężenie radonu. W przypadku większości pomiarów stężenia radonu wspomniane czujniki należy następnie przekazać do laboratorium w celu przeprowadzenia analizy. Metody pomiaru stężenia radonu opierają się na detek cji promieniowania związanego z rozpadem promieniotwórczym. Do tych metod należą: 1) Monitoring poprzez pobieranie próbek powietrza zawierającego radon. Do takich pomiarów stosuje się cylindryczne naczynie, którego ścianki pokryte są scyntylatorem. Próbkę powietrza pobiera się do cylindra, a następnie łączy się optycznie z fotopowielaczem współpracującym z układem zliczającym. 2) Pojemnik z węglem aktywnym używany do zbierania radonu to szczelnie zamykane naczynie o średnicy około 10 cm wypełnione węglem aktywnym, który z chwilą otwarcia pojemnika absorbuje radon z powietrza. 3) Detektory śladowe wykorzystują zjawisko naruszania struktury niektóryc h rodzajów ciał stałych w wyniku oddziaływania z cząstkami alfa. Naruszenie tej struktury ma bardzo małą średnicę, którą można uwidocznić poprzez odpowiednie trawienie chemiczne. Powstają wtedy ślady widoczne pod mikroskopem. Na czas pomiaru małą plastykową

9 9 II PRACOWNIA FIZYCZNA: płytkę umieszcza się w niewielkim pojemniczku. Radioaktywne atomy radonu, zderzając się z płytką zostawiają ślady widoczne dopiero po obróbce chemicznej we właściwym laboratorium. Ślady te zostają zliczone i na tej podstawie można ocenić stężenie radonu w danym w pomieszczeniu. Rys. 5. Schemat płytek po ekspozycji na radon. Płytka znajdująca się w pojemniku umieszczona zostaje w miejscu pomiaru i po ekspozycji trwającej od kilku tygodni do kilku miesięcy wraca do laboratorium gdzie poddana jest trawieniu w roztworze NaOH, a uwidocznione w ten sposób ślady zliczane są pod mikroskopem. Sposób realizacji ćwiczenia Wykonanie ćwiczenia. Celem ćwiczenia jest wyznaczenie stężenia radonu w trzech różnych pomieszczeniach budynku Uniwersytetu Pedagogicznego, a mianowicie: w piwnicy, w pomieszczeniu II Pracowni Fizycznej (p. 414) i w sekretariacie Instytutu Fizyki (p. 515). Detektory plastikowe umieszczone zostały w ww. pomieszczeniach na okres około pół roku tj. od do Materiałem plastikowym był CR-39 (allyl diglycol carbonate - ADC) produkowany przez angielską firmę Pershore. Po upł ywie podanego wyżej czasu ekspozycji, detektory zostały poddane obróbce w Samodzielnej Pracowni Ochrony przed Promieniowaniem Instytutu Fizyki Jądrowej w Krakowie.

10 10 II PRACOWNIA FIZYCZNA: Poniższa tabela przedstawia oznaczenia poszczególnych detektorów. Miejsce Detektor p. 4p piwnica 19 p. 414 IV piętro 21 p. 515 V piętro 20 tło 22 Pozycja oznaczona tło, określa materiał detekcyjny, poddany obróbce w dniu , czyli w dniu rozpoczęcia ekspozycji w naszym budynku. Tok postępowania: 1) Przestudiować planszę PAA pt. Radon i sporządzić notatki do sprawozdania. 2) Umieścić jeden z detektorów pod mikroskopem i przy powiększeniu obiektywu równym 20, dobrać warunki obserwacji tak, by otrzymać wyraźny obraz śladów cząsteczek alfa. Policzyć liczbę śladów cząstek w 50. polach obserwacyjnych. 3) Powtórzyć pkt. 2 dla pozostałych dwu detektorów, a także dla detektora, na którym zarejestrowane jest tło. 4) Korzystając ze szkiełka mikrometrycznego, wyposażonego w podziałkę (1 mm podzielony na 100 części - 1 część 0,01mm), obliczyć pole powierzchni obserwacyjnej, a następnie pole sumarycznej powierzchni obserwacyjnej i wyrazić je w cm 2. Opracowanie wyników. W celu wyliczenia stężenia radonu w poszczególnyc h pomieszczeniach, korzystamy z podanego przez Samodzielną Pracownię Ochrony przed Promieniowaniem IFJ współczynnika kalibracji k, wyznaczonego przy użyciu źródła radonu o znanej aktywności. Współczynnik ten jest równy: Szukane stężenie radonu wyraża się wzorem: 3 ślad m k 2,4 2 cm kbq h gdzie: S L k t kbq m 3 S - stężenie radonu w kbq/m 3 ; L - liczba śladów cząstek alfa po odjęciu tła przypadająca na 1 cm 2 ; k - współczynnik kalibracji; t - czas ekspozycji wyrażony w godzinach.

11 11 II PRACOWNIA FIZYCZNA: t = = x dni 24 godz. = X h t = = 192 dni 24 godz. = 4608 h Pole koła : 2 d P 4 Pole 50 kół: 50 0,0022 cm 2 = 0,11 cm 2 Liczba śladów cząstek alfa po odjęciu tła = przeliczamy na 1 cm 2 d = 0,53 mm = 0,053 cm 2 0, 053 0, 0028 P 3, , 0, 0022 cm 4 4 0,11 cm 2 1 cm 2 L 1 L 0, 11 Opracowanie wyników. W celu wyliczenia stężenia radonu w poszczególnyc h pomieszczeniach, korzystamy z podanego przez Samodzielną Pracownię Ochrony przed Promieniowaniem IFJ współczynnika kalibracji k, wyznaczonego przy użyciu źródła radonu o znanej aktywności. 2 Współczynnik ten jest równy: 3 ślad m k 2,4 2 cm kbq h 3 ślad m k 2,4 2 cm kbq h Szukane stężenie radonu wyraża się wzorem: gdzie: S L k t kbq m 3 S - stężenie radonu w kbq/m 3 ; L - liczba śladów cząstek alfa po odjęciu tła przypadająca na 1 cm 2 ; k - współczynnik kalibracji;

12 12 II PRACOWNIA FIZYCZNA: t - czas ekspozycji wyrażony w godzinach. t = = x dni 24 godz. = X h t = = 192 dni 24 godz. = 4608 h Pole jednego kwadratu : 0,046 cm 0,046 cm = 0,0021 cm 2 pole 50 kwadtatów: 50 0,0021 cm 2 = 0,105 cm 2 Liczba śladów cząstek alfa po odjęciu tła = przeliczamy na 1 cm 2 0,105 cm 2 1 cm 2 L 1 L 0,105,

Promieniowanie w naszych domach. I. Skwira-Chalot

Promieniowanie w naszych domach. I. Skwira-Chalot Promieniowanie w naszych domach I. Skwira-Chalot Co to jest promieniowanie jonizujące? + jądro elektron Rodzaje promieniowania jonizującego Przenikalność promieniowania L. Dobrzyński, E. Droste, W. Trojanowski,

Bardziej szczegółowo

Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy.

Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy. Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy. Starajmy się więc zmniejszyć koncentrację promieniotwórczego

Bardziej szczegółowo

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych

Bardziej szczegółowo

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym Praca zbiorowa pod redakcją Jana Skowronka GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2007 SPIS TREŚCI WPROWADZENIE (J. SKOWRONEK)...

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

przyziemnych warstwach atmosfery.

przyziemnych warstwach atmosfery. Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Wyznaczanie promieniowania radonu

Wyznaczanie promieniowania radonu Wyznaczanie promieniowania radonu Urszula Kaźmierczak 1. Cele ćwiczenia Zapoznanie się z prawem rozpadu promieniotwórczego, Pomiar aktywności radonu i produktów jego rozpadu w powietrzu.. Źródła promieniowania

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Wyższy Urząd Górniczy Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Katowice 2011 Copyright by Wyższy Urząd Górniczy, Katowice 2011

Bardziej szczegółowo

Laboratorium Fizyki i Techniki Jądrowej

Laboratorium Fizyki i Techniki Jądrowej Laboratorium Fizyki i Techniki Jądrowej Radon 2: Pomiary zawartości radonu Rn-222 w próbkach wody Opracowanie: mgr inż. Zuzanna Podgórska, podgorska@clor.waw.pl Miejsce wykonania ćwiczenia: Zakład Kontroli

Bardziej szczegółowo

WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych

WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych WSTĘP I. ROZPAD PROMIENIOTWÓRCZY I RODZAJE PROMIENIOWANIA JĄDROWEGO Rozpadem promieniotwórczym (przemianą promieniotwórczą)

Bardziej szczegółowo

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Rodzaje promieniowania PROMIENIOWANIE ŁADUNEK ELEKTRYCZNY MASA CECHY CHARAKTERYSTYCZNE alfa +2e 4u beta

Bardziej szczegółowo

Energetyka w Środowisku Naturalnym

Energetyka w Środowisku Naturalnym Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 12 17/24 stycznia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/

Bardziej szczegółowo

Promieniowanie w środowisku człowieka

Promieniowanie w środowisku człowieka Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe

Bardziej szczegółowo

Reakcje rozpadu jądra atomowego

Reakcje rozpadu jądra atomowego Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Co nowego w dozymetrii? Dozymetria radonu

Co nowego w dozymetrii? Dozymetria radonu Co nowego w dozymetrii? Dozymetria radonu mgr inż. Zuzanna Podgórska podgorska@clor.waw.pl Laboratorium Wzorcowania Przyrządów Dozymetrycznych i Radonowych Zakład Kontroli Dawek i Wzorcowania Wstęp 1898

Bardziej szczegółowo

tel./ kom./fax: 012 66 28 332 / 0 517 904 204 / 012 66 28 458; e-mail: radon@ifj.edu.pl; http:// radon.ifj.edu.pl RAPORT KOŃCOWY

tel./ kom./fax: 012 66 28 332 / 0 517 904 204 / 012 66 28 458; e-mail: radon@ifj.edu.pl; http:// radon.ifj.edu.pl RAPORT KOŃCOWY INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego POLSKIEJ AKADEMII NAUK LABORATORIUM EKSPERTYZ RADIOMETRYCZNYCH doświadczenie profesjonalizm solidność ul. E. Radzikowskiego 152, 31-342 KRAKÓW tel./

Bardziej szczegółowo

1. Wstęp. Z prasy. Encyklopedia medyczna. Autor: Hayk Hovhannisyan. Tytuł: Badanie transportu radonu w ośrodku porowatym na stanowisku laboratoryjnym

1. Wstęp. Z prasy. Encyklopedia medyczna. Autor: Hayk Hovhannisyan. Tytuł: Badanie transportu radonu w ośrodku porowatym na stanowisku laboratoryjnym 1. Wstęp Radon cichy zabójca, niewidzialny przenikający do naszych domów. Z prasy Radonoterapia sposób leczenia wielu chorób za pomocą ekspozycji radonu lub radonowych wód. Encyklopedia medyczna Temat

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2 Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym

Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym Wydział Fizyki PW - Laboratorium Fizyki i Techniki Jądrowej Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym Kalina Mamont-Cieśla 1, Magdalena Piekarz 1, Jan Pluta 2 -----------------------------------------------------------------

Bardziej szczegółowo

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY. . JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +

Bardziej szczegółowo

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie

Bardziej szczegółowo

Promieniotwórczość NATURALNA

Promieniotwórczość NATURALNA Promieniotwórczość NATURALNA Badając świecenie różnych substancji, zauważyłem, że wszystkie związki uranu wysyłają promieniowanie przenikające przez czarny papier i inne osłony oraz powodują naświetlenie

Bardziej szczegółowo

BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8

BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8 Ćwiczenie BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8 I. WSTĘP W skorupie ziemskiej znajduje się promieniotwórczy uran-238 ( 238 U), wytworzony wiele miliardów lat temu. Przetrwał

Bardziej szczegółowo

CEL 4. Natalia Golnik

CEL 4. Natalia Golnik Etap 15 Etap 16 Etap 17 Etap 18 CEL 4 OPRACOWANIE NOWYCH LUB UDOSKONALENIE PRZYRZĄDÓW DO POMIARÓW RADIOMETRYCZNYCH Natalia Golnik Narodowe Centrum Badań Jądrowych UWARUNKOWANIA WYBORU Rynek przyrządów

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α

Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α 39 40 Ćwiczenie 3 POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU W ćwiczeniu dokonuje się pomiaru zasięgu w powietrzu cząstek α emitowanych przez źródło promieniotwórcze. Pomiary wykonuje się za pomocą komory jonizacyjnej

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

O egzotycznych nuklidach i ich promieniotwórczości

O egzotycznych nuklidach i ich promieniotwórczości O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu

Bardziej szczegółowo

RAPORT Z POMIARÓW PORÓWNAWCZYCH STĘŻENIA RADONU Rn-222 W PRÓBKACH GAZOWYCH METODĄ DETEKTORÓW PASYWNYCH

RAPORT Z POMIARÓW PORÓWNAWCZYCH STĘŻENIA RADONU Rn-222 W PRÓBKACH GAZOWYCH METODĄ DETEKTORÓW PASYWNYCH Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk LABORATORIUM EKSPERTYZ RADIOMETRYCZNYCH Radzikowskiego 152, 31-342 KRAKÓW tel.: 12 66 28 332 mob.:517 904 204 fax: 12 66 28

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Najbardziej rozpowszechniony pierwiastek we Wszechświecie, Stanowi główny składnik budujący gwiazdy,

Najbardziej rozpowszechniony pierwiastek we Wszechświecie, Stanowi główny składnik budujący gwiazdy, Położenie pierwiastka w UKŁADZIE OKRESOWYM Nazwa Nazwa łacińska Symbol Liczba atomowa 1 Wodór Hydrogenium Masa atomowa 1,00794 Temperatura topnienia -259,2 C Temperatura wrzenia -252,2 C Gęstość H 0,08988

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2010/2011

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2010/2011 Kuratorium Oświaty w Lublinie Kod ucznia KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2010/2011 ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu chemicznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,

Bardziej szczegółowo

Budowa atomu Wiązania chemiczne

Budowa atomu Wiązania chemiczne strona 1/8 Budowa atomu Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu: jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Pierwiastki promieniotwórcze w materiałach budowlanych

Pierwiastki promieniotwórcze w materiałach budowlanych Pierwiastki promieniotwórcze w materiałach budowlanych XVII Konferencja Inspektorów Ochrony Radiologicznej Skorzęcin 11-14.06.2014 dr Wiesław Gorączko Politechnika Poznańska Inspektor Ochrony Radiologicznej

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone

Bardziej szczegółowo

KONKURS CHEMICZNY DLA GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS CHEMICZNY DLA GIMNAZJUM ETAP WOJEWÓDZKI KONKURS HEMIZNY L GIMNZJUM ETP WOJEWÓZKI 2004 / 2005rok Zadanie 1. [1 pkt] Z podanych atomów pierwiastków wybierz ten, dla którego suma liczby protonów i liczby neutronów jest równa 38. 64 39 38 26 38

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

WYZNACZANIE ZAWARTOŚCI POTASU

WYZNACZANIE ZAWARTOŚCI POTASU POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Budowa atomu. Wiązania chemiczne

Budowa atomu. Wiązania chemiczne strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Oddziaływanie promieniowania jonizującego z materią Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 26 kwietnia 2017 Wykład IV Oddziaływanie promieniowania jonizującego

Bardziej szczegółowo

1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4.

1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4. 1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4. Przenikanie promieniowania α, β, γ, X i neutrony 5. Krótka

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Radioaktywność w środowisku Rok akademicki: 2030/2031 Kod: STC-2-212-OS-s Punkty ECTS: 2 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Ochrona środowiska w energetyce

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu promieniowania

Bardziej szczegółowo

KONKURS CHEMICZNY ROK PRZED MATURĄ

KONKURS CHEMICZNY ROK PRZED MATURĄ Wydział Chemii UMCS Polskie Towarzystwo Chemiczne Doradca metodyczny ds. nauczania chemii KONKURS CHEMICZNY ROK PRZED MATURĄ ROK SZKOLNY 2006/2007 ETAP SZKOLNY Numer kodowy Suma punktów Podpisy Komisji:

Bardziej szczegółowo

Zgodnie z rozporządzeniem wczesne wykrywanie skażeń promieniotwórczych należy do stacji wczesnego ostrzegania, a pomiary są prowadzone w placówkach.

Zgodnie z rozporządzeniem wczesne wykrywanie skażeń promieniotwórczych należy do stacji wczesnego ostrzegania, a pomiary są prowadzone w placówkach. Rozporządzenie Rady Ministrów z dnia 17 grudnia 2002 r. w sprawie stacji wczesnego wykrywania skażeń promieniotwórczych i placówek prowadzących pomiary skażeń promieniotwórczych Joanna Walas Łódź, 2014

Bardziej szczegółowo

P O L I T E C H N I K A W R O C Ł A W S K A

P O L I T E C H N I K A W R O C Ł A W S K A P O L I T E C H N I K A W R O C Ł A W S K A Wydział Chemiczny, Zakład Metalurgii Chemicznej Chemia Środowiska Laboratorium RADIOAKTYWNOŚĆ W BUDYNKACH CEL ĆWICZENIA : Wyznaczanie pola promieniowania jonizującego

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

I edycja Konkursu Chemicznego im. Ignacego Łukasiewicza dla uczniów szkół gimnazjalnych. rok szkolny 2014/2015 ZADANIA.

I edycja Konkursu Chemicznego im. Ignacego Łukasiewicza dla uczniów szkół gimnazjalnych. rok szkolny 2014/2015 ZADANIA. I edycja Konkursu Chemicznego im. Ignacego Łukasiewicza dla uczniów szkół gimnazjalnych rok szkolny 2014/2015 ZADANIA ETAP I (szkolny) Zadanie 1 Wapień znajduje szerokie zastosowanie jako surowiec budowlany.

Bardziej szczegółowo

Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego

Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego Ćwiczenie 8 Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego 8.. Zasada ćwiczenia Celem ćwiczenia jest wyznaczenie czasu połowicznego zaniku izotopu promieniotwórczego Ba-37m (izotop wtórny)

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI Wilhelm Roentgen 1896 Stan wiedzy na rok 1911 1. Elektron masa i ładunek znikomy ułamek masy atomu 2. Niektóre atomy samorzutnie emitują

Bardziej szczegółowo

Test kompetencji z chemii do liceum. Grupa A.

Test kompetencji z chemii do liceum. Grupa A. Test kompetencji z chemii do liceum. Grupa A. 1. Atomy to: A- niepodzielne cząstki pierwiastka B- ujemne cząstki materii C- dodatnie cząstki materii D- najmniejsze cząstki pierwiastka, zachowujące jego

Bardziej szczegółowo

Poziom nieco zaawansowany Wykład 2

Poziom nieco zaawansowany Wykład 2 W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie

Bardziej szczegółowo

I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O W R O K U

I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O W R O K U I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O S K Ł A D O W I S K A O D P A D Ó W P R O M I E N I O T W Ó R C Z Y C H W 2 0 1 8 R O K U Zgodnie z artykułem

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

BUDOWA ATOMU KRYSTYNA SITKO

BUDOWA ATOMU KRYSTYNA SITKO BUDOWA ATOMU KRYSTYNA SITKO Ziarnista budowa materii Otaczająca nas materia to świat różnorodnych substancji np. woda, powietrze, drewno, metale. Sprawiają one wrażenie, że mają budowę ciągłą, to znaczy

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Temat: Ołów 210 w osadach jeziornych

Temat: Ołów 210 w osadach jeziornych Geochemia izotopów Temat: Ołów 210 w osadach jeziornych Arkadiusz Bulak 1. Zarys geochemii elementów szeregu uranowego Opis zachowania poszczególnych elementów jest trudny ze względu na różne ich właściwości

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE. Ochrona Radiologiczna - szkolenie wstępne 1

MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE. Ochrona Radiologiczna - szkolenie wstępne 1 MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE Ochrona Radiologiczna - szkolenie wstępne 1 Cel szkolenia wstępnego: Zgodnie z Ustawą Prawo Atomowe

Bardziej szczegółowo

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I...... Imię i nazwisko ucznia ilość pkt.... czas trwania: 90 min Nazwa szkoły... maksymalna ilość punk. 33 Imię

Bardziej szczegółowo

Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła

Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Fizjologiczne, fotochemiczne, fotoelektryczne działanie światła wywołane jest drganiami wektora

Bardziej szczegółowo

Szanowne koleżanki i koledzy nauczyciele chemii!

Szanowne koleżanki i koledzy nauczyciele chemii! Szanowne koleżanki i koledzy nauczyciele chemii! Chciałabym podzielić się z Wami moimi spostrzeżeniami dotyczącymi poziomu wiedzy z chemii uczniów rozpoczynających naukę w Liceum Ogólnokształcącym. Co

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Wewnętrzna budowa materii

Wewnętrzna budowa materii Atom i układ okresowy Wewnętrzna budowa materii Atom jest zbudowany z jądra atomowego oraz krążących wokół niego elektronów. Na jądro atomowe składają się protony oraz neutrony, zwane wspólnie nukleonami.

Bardziej szczegółowo

- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek,

- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek, Ćwiczenie A Wyznaczanie napięcia pracy licznika Ćwiczenie B Pomiary próbek naturalnych (gleby, wody) Ćwiczenie C Pomiary próbek żywności i leków - ĆWICZENIA - Radioaktywność w środowisku naturalnym K.

Bardziej szczegółowo

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji:

Nazwy pierwiastków: A +Fe 2(SO 4) 3. Wzory związków: A B D. Równania reakcji: Zadanie 1. [0-3 pkt] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Suma protonów i elektronów anionu X 2- jest równa 34. II. Stosunek masowy

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład V Krzysztof Golec-Biernat Oddziaływanie promieniowania jonizującego z materią Uniwersytet Rzeszowski, 6 grudnia 2017 Wykład V Krzysztof Golec-Biernat Promieniowanie jonizujące

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje rejonowe II stopień

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje rejonowe II stopień POUFNE Pieczątka szkoły 28 stycznia 2016 r. Kod ucznia (wypełnia uczeń) Imię i nazwisko (wypełnia komisja) Czas pracy 90 minut KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 Eliminacje rejonowe

Bardziej szczegółowo

ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH

ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH ĆWICZENIE 3 BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu w

Bardziej szczegółowo

WPROWADZENIE WPROWADZENIE WYPOSAŻENIE, FUNKCJE

WPROWADZENIE WPROWADZENIE WYPOSAŻENIE, FUNKCJE WPROWADZENIE WYPOSAŻENIE, FUNKCJE OGÓLNOPOLSKIE BADANIA PORÓWNAWCZE APARATURY DLA POMIARU STĘŻENIA RADONU I JEGO PRODUKTÓW ROZPADU PROWADZONE NA RADONOWYM STANOWISKU WZORCOWYM (RSW) CLOR WPROWADZENIE Z

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013 Kuratorium Oświaty w Lublinie Kod ucznia KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013 ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu chemicznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo