Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu."

Transkrypt

1 Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP Przedmiot: Optymalizacja w transporcie Specjalność: LT, TD, TŻ Wersja: Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 2 transporcie 1

2 Wprowadzenie Cel i zakres wykładu à Cel rozpoznanie specyfiki problemu portfelowego zbudowanie modelu matematycznego rozwiązanie problemu (metodą graficzną i z zastosowaniem Solver-a) uogólnienie problemów o charakterze liniowym Grafika: 3 Wprowadzenie Ramowy program zajęć wadzenie acja zajęć, kluczowe! M1: dobór i wykorzystanie zasobów budowa portfela produktowego (programowanie liniowe) ustalanie kompozycji floty (programowanie całkowitoliczbowe) załadunek problem plecakowy (programowania całkowitoliczbowe) harmonogramowanie pracy (programowanie binarne) warsztat podsumowujący M1 à 3 moduły tematyczne (grupy problemów) M0: wprowadzenie M1: dobór i wykorzystanie zasobów M2: lokalizacja obiektów i ustalanie zasięgu ich działania M3: ustalanie tras M4: podsumowanie 4 transporcie 2

3 Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 5 Definicja problemu à Ustalenie zestawu produktów, lub usług (zasobów) gwarantujących osiągnięcie najkorzystniejszego rezultatu rynkowego w zdefiniowanych warunkach oferta usług logistycznych rodzaj przewozów w firmie transportowej 6 transporcie 3

4 Definicja problemu A: Dobór metody rozwiązania. B: Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza problemu na przykładzie 4-etapowy proces rozwiązywania 7 : Identyfikacja Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Analiza przypadku problem sformułowany w postaci zadania programowania liniowego zobacz treść przypadku: Firma ForkLift Service (FLS) jest jednym z ( ) 8 transporcie 4

5 : matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Zmienne decyzyjne 2 zmienne S: liczba sprzedanych wózków widło-wych typu 20S oferowana przez FLS H: liczba sprzedanych wózków widło-wych typu 45H oferowana przez FLS à Parametry zyskowność koszt jednostkowy vs. budżet pracochłonność vs. zatrudnienie dostępność 9 : matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Funkcja celu maksymalizacja zysku Z ze sprzedaży wózków widłowych typu 20S i 45H Max Z(S,H) jak ustalić zysk wynikający ze sprzedaży obu typów wózków? Z=z S +z H gdzie: z S - jednostkowy zysk ze sprzedaży wózka typu 20S z H - jednostkowy zysk ze sprzedaży wózka typu 45H 10 transporcie 5

6 : matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Funkcja celu zyskowność ze sprzedaży każdego typu modelu z s = 0, [ ] S = 2.850S z H = 0, [ ] H = 6.270H ostateczne sformułowanie funkcji celu jeżeli Z=z S +z to Max Z(S, H) = 2.850S H 11 : matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (identyfikacja) (1) zasoby finansowe firmy FLS max [ /rok] (2) dostępny fundusz czasu pracy poświęcany przez pracowników FLS na sprzedaż wózków 20S i 45H max. 520 [rbh/rok] (3) dostępność wózków u producenta 20S: max 100 [szt./rok] 45H: max 75 [szt./rok] (4) minimalna wielkość zamówienia u producenta 20S: min 10 [szt.] 45H: min 5 [szt.] 12 transporcie 6

7 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (1) zasoby finansowe firmy FLS: max [ ], stąd: S H [ ] (2) dostępny fundusz czasu pracy: max. 520 [rbh/rok], stąd: 6 S + 4 H 520 [rbh/rok] 13 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (3) możliwości produkcyjne firmy Clark w zakresie dostarczenia firmie FLS wózków widłowych typu 20S i 45H dostępność wózków 20S S 100 [szt./rok] dostępność wózków 45H H 75 [szt./rok] 14 transporcie 7

8 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (4) minimalna liczba wózków w jednorazowym zamówieniu, zapewniająca ciągłość sprzedaży przy jednoczesnym zachowaniu satysfakcji klientów firmy FLS zapotrzebowanie firmy FLS na wózki typu 20S S 10 [szt./rok] zapotrzebowanie firmy FLS na wózki typu 45H H 5 [szt./rok] 15 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (5) formalnie: poszukiwane rozwiązanie (S, H) nie powinno przyjmować wartości ujemnych dla wózków typu 20S S 0 [szt./rok] dla wózków typu 45H H 0 [szt./rok] 16 transporcie 8

9 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ostateczna postać modelu matematycznego funkcja celu Max Z(S, H) = 2.850S H przy ograniczeniach (1) 19S + 33H (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 17 : Dobór metody i rozwiązanie A. Dobór metody rozwiązania B. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu Metoda graficzna 18 transporcie 9

10 H 140 (4.1) S 10 Obszar rozwiązań niedopuszczalnych (3.1) S 100 : Dobór metody i rozwiązanie Metoda graficzna Funkcja celu: Max Z(S, H) = 2.850S H (5.1) 10 Obszar rozwiązań dopuszczalnych dla ograniczeń (3.1) (5.2) S 0 H 0 (5.2) H 75 Ograniczenia (5.1) i (5.2) są nieaktywne (3.2) H 5 (4.2) S Ograniczenia: (1) 19S + 33H (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 19 H (4.1) (0;130) (2) S 10 Ograniczenie (3.1) staje się nieaktywne 6S + 4H = 520 (3.1) S 100 H 75 (3.2) : Dobór metody i rozwiązanie Metoda graficzna Funkcja celu: Max Z(S, H) = 2.850S H Ograniczenia: (1) 19S + 33H (2) 6S + 4H (5.1) S 0 H 0 (5.2) (86,7; 0) H 5 (4.2) ograniczenie (2) 6S + 4H = 520 jeżeli S = 0 to H = 130; (0;130) jeżeli H = 0 to S = 86,7; (86,7;0) S 20 transporcie 10

11 H 140 (130) (4.1) S 10 (3.1) S 100 : Dobór metody i rozwiązanie Metoda graficzna Funkcja celu: Max Z(S, H) = 2.850S H (2) (0; 72,7) 6S + 4H = 520 H 75 (3.2) Ograniczenia: (1) 19S + 33H (2) 6S + 4H (5.1) 10 S 0 H 0 (5.2) (1) 19S +33H = (126,3; 0) H 5 20 (86,7) (4.2) S ograniczenie (1) 19 S + 33 H = jeżeli S = 0 to H = 72,7 (0;72,7) jeżeli H = 0 to S = 126,3 (126,3;0) 21 H 140 S = 10 S = 100 : Dobór metody i rozwiązanie Metoda graficzna (130) 100 6S + 4H = 520 Ostatni wierzchołek określanie kierunku zmiany wartości funkcji celu (tu kierunek przyrostu FC) Max Z(S, H) = 2.850S H 2.850S H = 0 75 H = 75 Z 2 = Z 1 = (40; 40) 19S +33H = jeżeli S = 10 to H = -4,5 (10; -4,5) jeżeli S = 20 to H = -9 (20; -9) 20 (40; 20) Z= 2 850S H 5 H = 5 0-4, (86,7) (126,3) S 22 transporcie 11

12 H 140 (130) S = 10 6S + 4H = 520 (10; 66,96) S = 100 H = 75 19S +33H = H = S (86,7) (126,3) : Dobór metody i rozwiązanie Metoda graficzna określanie parametrów wierzchołka (określenie punktu przecięcia prostych) S = 10 19S + 33H = H = -19/33 S /33 S = 10; H = 66,96 określanie wartości funkcji celu jeżeli S = 10 i H = 66,96 to Z = à Z max 23 : Dobór metody i rozwiązanie Metoda graficzna à Algorytm metody graficznej (1) narysuj obszar rozwiązań dopuszczalnych i określ jego wierzchołki jeżeli obszar rozwiązań jest pusty à wszystkie rozwiązania są niedopuszczalne à ponownie rozważ sformułowanie ograniczeń (2) narysuj 2 różne wykresy funkcji celu (FC) i określ kierunek optymalizacji (max vs. min) jeżeli problem dotyczy max FC równolegle przesuń linię reprezentującą FC w kierunku przyrostu jej wartości jeżeli problem polega na min FC przesuń linię w kierunku przeciwnym, tj. zmniejszania się wartości FC (3) przesuń funkcję celu znajdując ostatni wierzchołek w przypadku, gdy FC jest równoległa do jednego z boków obszaru rozwiązań dopuszczalnych (ORD), wówczas problem posiada szereg rozwiązań alternatywnych leżących pomiędzy wierzchołkami ORD (4) równania prostych, które przecinają się w punkcie wierzchołkowym (patrz p.3) tworzą układ równań określających współrzędne punktu optymalnego 24 transporcie 12

13 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Rozwiązanie optymalne optymalna liczba sprzedanych wózków widłowych 20S wynosi S=10 [szt.] optymalna liczba sprzedanych wózków widłowych 45H wynosi H=66,96 [szt.] w praktyce: H=66 lub H=67* (*- rozwiązanie poza obszarem rozwiązań dopuszczalnych) zysk ze sprzedaży wózków obu typów Z=2.850S H S=10 [szt.] i H=66,96 [szt.] Z= [ ] à Z max lub S=10 i H=66 à Z= [ ] 25 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (1) dostępne zasoby finansowe LHS* RHS* S H jeżeli S=10 [szt.] i H=66,96 [szt.] to LHS 1 = [ ] RHS 1 = 0 [ ] (brak zasobów!) * LHS ang. left-hand side; RHS- ang. right-hand side 26 transporcie 13

14 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (2) dostępna liczba roboczogodzin 6S + 4H 520 jeżeli S=10 szt. i H=66,96 [szt.] to LHS 2 = 327,84 [rbh] RHS 2 =192,16 [rbh] (wolne zasoby) 27 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (3.1) dostępność wózków 20S S 100 jeżeli S=10 szt. i H=66,96 [szt.] to LHS 3 = 10 [szt.] RHS 3 = 90 [szt.] (wolne zasoby) 28 transporcie 14

15 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (3.2) dostępność wózków 45H H 75 jeżeli S=10 szt. i H=66,96 [szt.] to LHS 4 = 66,96 [szt.] RHS 4 = 8,04 [szt.] (wolne zasoby) 29 : Interpretacja rozwiązania i analiza wrażliwości à Analiza ograniczeń pozostałe ograniczenia ( ) A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 30 transporcie 15

16 : Dobór metody i rozwiązanie A. Dobór metody rozwiązania B. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu Metoda graficzna 31 : Dobór metody i rozwiązanie Solver Model zbudowany w MS Excel stanowi załącznik do materiału wykładowego: _LP.xlsx Funkcja celu: Max Z(S, H) = 2.850S H Ograniczenia: (1) 19S + 33H (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 Zapis modelu matematycznego w arkuszu MS Excel Model matematyczny problemu 32 transporcie 16

17 : Dobór metody i rozwiązanie Solver =C7*C3 + D7*D3 lub =SUMA.ILOCZYNÓW(C7:D7; C3:D3) Funkcja celu: Max Z(S, H) = 2.850S H Ograniczenia: (1) 19S + 33H (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 33 : Dobór metody i rozwiązanie Solver =C12*C3 + D12*D3 lub =SUMA.ILOCZYNÓW(C12:D12; C3:D3) LHS* Funkcja celu: Max Z(S, H) = 2.850S H Ograniczenia: (1) 19S + 33H (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 RHS* * LHS ang. left-hand side; RHS- ang. right-hand side 34 transporcie 17

18 : Dobór metody i rozwiązanie Solver 35 : Interpretacja rozwiązania i analiza wrażliwości Solver Max Z(S, H) = dla S=10 [szt.] i H=66,96 [szt.] Wykorzystane zasoby * LHS ang. left-hand side; RHS- ang. right-hand side 36 transporcie 18

19 : Interpretacja rozwiązania i analiza wrażliwości Solver Max wartość FC Wartość zmiennych decyzyjnych dla optimum FC LHS dla wartości zmiennych decyzyjnych Raport wyników RHS dla wartości zmiennych decyzyjnych; Wiążące = brak zasobów Niewiążace = wolne zasoby 37 : Interpretacja rozwiązania i analiza wrażliwości Solver Optymalna wartość zm. dec. Parametry w FC Dopuszczalny wzrost/ zmniejszenie wartości param., dla których wartości zm. dec. nie ulegną zmianie Jaki zakres zmian RHS nie spowoduje zmiany ceny dualnej Raport wrażliwości O Ile zmieni się wartość FC, jeżeli RHS wzrośnie o 1 38 transporcie 19

20 : Interpretacja rozwiązania i analiza wrażliwości Solver Optymalna wartość FC Wartość zm. dec. dla których FC à max Granice zmienności obszaru rozwiązań dopuszczalnych FC nie zależy od zmian S DG (S)= GG (S) = 10 DG (H) = 5; GG (H) = 66,97 Raport granic 39 : Interpretacja rozwiązania i analiza wrażliwości Solver H 140 (130) S = 10 S = S + 4H = H = 75 Z(max) = E 19S +33H = Z(min) = E 5 H = S (86,7) (126,3) 40 transporcie 20

21 : Interpretacja rozwiązania i analiza wrażliwości à Rozwiązanie problemu portfelowego czy w portfelu produktowym (palecie wózków) znajdują się modele 20S i 45H? 20S: 10 szt. 45H: 66(,97) szt. rekomendacja utrzymanie 20S w portfelu dla zachowania ciągłości sprzedaży koncentracja sprzedaży na 45H pozyskanie dodatkowych środków finansowych (eliminacja ograniczenia) à Czy na pewno model zbudowano właściwie? czy zapis funkcji celu i ograniczeń jest właściwy? 41 Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 42 transporcie 21

22 Zadanie programowania liniowego Zapis à Ogólne sformułowanie zadania programowania liniowego funkcja celu (maksymalizacja) Max Z = c 1 x 1 + c 2 x c n x n ograniczenia (dostępne zasoby) a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2... a m1 x 1 + a m2 x a mn x n b m x 1 0, x 2 0,..., x n 0 gdzie: x 1, x 2,..., x 3 zmienne decyzyjne parametry: c j jednostkowy przyrost j-tej czynności w ocenie globalnej Z (j = 1, 2,..., n) b i ilość i -tego zasobu dostępnego do alokacji do czynności (i = 1, 2,..., m) a ij ilość i -tego zasobu konsumowanego przez j-tą czynność 43 Zadanie programowania liniowego Cechy zpl à Model matematyczny problemu à Które z poniższych sformułowań maja sformułowany w postaci zadania charakter liniowy? programowania liniowego 2 Min Z (x funkcja celu (kryterium jakości dobroci 1,x 2 ) = 2x 1 + 3x 2 rozwiązania) 3 Min Z (x funkcja liniowa 1,x 2 ) = x 1 + x 2 zmienne decyzyjne w pierwszej potędze 2x ograniczenia 1 + 3x funkcja liniowa Min Z (x 1,x 2 ) = 2x 1 + x 2 zmienne decyzyjne w pierwszej potędze zależności w postaci >, <, = 3x 1 + 4x 2 + x transporcie 22

23 Zadanie programowania liniowego Cechy zpl à Co w praktyce oznacza liniowość modelu matematycznego? zależność funkcyjna pomiędzy zmiennymi decyzyjnymi posiada graficzną reprezentację w postaci prostych dotyczy to każdego wyrażenia w modelu matematycznym 45 Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 46 transporcie 23

24 Podsumowanie Przypomnienie kluczowych pojęć à Resume problem portfelowy (PP) rozwiązanie przykładowego PP - identyfikacja problemu - budowa modelu matematycznego - dobór metody i rozwiązanie - interpretacja rozwiązania i analiza wrażliwości uogólniony model zadania programowania liniowego definicja rozwiązań - rozwiązanie dopuszczalne rozwiązanie dla którego spełnione są wszystkie ograniczenia - rozwiązania niedopuszczalne rozwiązania znajdujące się poza obszarem rozwiązań dopuszczalnych - rozwiązanie optymalne (optimum) rozwiązanie dopuszczalne osiągające wartość ekstremalną - ograniczenie aktywne ograniczenie wyznaczające obszar rozwiązań dopuszczalnych - ograniczenie nieaktywne ograniczenie nie należące do obszaru rozwiązań dopuszczalnych 47 Podsumowanie Przypomnienie kluczowych pojęć à Resume przykłady obszarów rozwiązań dopuszczalnych Funkcja celu może przyjmować nieograniczone wartości Obszar rozwiązań dopuszczalnych jest pusty 48 transporcie 24

25 Podsumowanie Zapraszam do dyskusji i zadawania pytań Grafika: 49 Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP Przedmiot: Optymalizacja w transporcie Specjalność: LT, TD, TŻ Wersja: transporcie 25

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Schemat postępowania w badaniach operacyjnych decydent sytuacja decyzyjna decyzje decyzje dopuszczalne niedopuszczalne kryterium wyboru zadanie decyzyjne zmienne decyzyjne warunki

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11) Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego Wstęp Spośród różnych analitycznych metod stosowanych do rozwiązywania problemów optymalizacji procesów technologicznych

Bardziej szczegółowo

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Rozwiązywanie programów matematycznych

Rozwiązywanie programów matematycznych Rozwiązywanie programów matematycznych Program matematyczny składa się z następujących elementów: 1. Zmiennych decyzyjnych:,,, 2. Funkcji celu, funkcji-kryterium, która informuje o jakości rozwiązania

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM GOSPODARKI ELEKTROENERGETYCZNEJ INSTRUKCJA DO ĆWICZENIA 5 Planowanie

Bardziej szczegółowo

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli

Bardziej szczegółowo

Opis modułu kształcenia Programowanie liniowe

Opis modułu kształcenia Programowanie liniowe Opis modułu kształcenia Programowanie liniowe Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres podyplomowych

Bardziej szczegółowo

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną binarną są określane mianem zadania programowania binarnego. W stosunku do dyskretnych modeli decyzyjnych stosuje się odrębną klasę metod ich rozwiązywania. W dalszych częściach niniejszego rozdziału zostaną

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Analiza danych przy uz yciu Solvera

Analiza danych przy uz yciu Solvera Analiza danych przy uz yciu Solvera Spis treści Aktywacja polecenia Solver... 1 Do jakich zadań wykorzystujemy Solvera?... 1 Zadanie 1 prosty przykład Solvera... 2 Zadanie 2 - Optymalizacja programu produkcji

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Optymalizacja. Programowanie Matematyczne

Optymalizacja. Programowanie Matematyczne . dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Zakres tematyczny Metodyka optymalizacja liniowa, całkowitoliczbowa, nieliniowa, heurystyki,

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Tytuł: Identyfikacja procesu. Przedmiot: Zarządzanie procesami transportowo-logistycznymi Specjalność: Logistyka transportu Wersja: 2014.10.

Tytuł: Identyfikacja procesu. Przedmiot: Zarządzanie procesami transportowo-logistycznymi Specjalność: Logistyka transportu Wersja: 2014.10. Tytuł: Identyfikacja Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put Przedmiot: Zarządzanie

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2 PAWEŁ OSTASZEWSKI PIŁA, dn. 15.04.2003 nr indeksu: 55566 Laboratorium Metod Optymalizacji Sprawozdanie nr 2 1. TREŚĆ ZADANIA: Firma produkująca sok jabłkowy przewiduje następujące zapotrzebowanie na ten

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

Logistyka I stopień Ogólnoakademicki. Niestacjonarne. Zarządzanie logistyczne Katedra Inżynierii Produkcji Dr Sławomir Luściński

Logistyka I stopień Ogólnoakademicki. Niestacjonarne. Zarządzanie logistyczne Katedra Inżynierii Produkcji Dr Sławomir Luściński KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-1071 Techniki komputerowe we wspomaganiu decyzji logistycznych

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Badania operacyjne Operational research Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia

Bardziej szczegółowo

PROGRAM OPTYMALIZACJI PLANU PRODUKCJI

PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Strona 1 PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Program autorski opracowany przez Sławomir Dąbrowski ul. SIENKIEWICZA 3 m. 18 26-220 STĄPORKÓW tel: 691-961-051 email: petra.art@onet.eu, sla.dabrowscy@onet.eu

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki

Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki Liniowe Zadanie Decyzyjne model matematyczny, w którym zarówno funkcja celu jak i warunki ograniczające są funkcjami liniowymi ekonomiczne wykorzystanie Programowania Liniowego do opisu sytuacji decyzyjnej

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Rachunkowość zarządcza

Rachunkowość zarządcza Rachunkowość zarządcza Dorota Kuchta www.ioz.pwr.wroc.pl/pracownicy/kuchta/dydaktyka.htm 1 Podstawowa literatura Gabrusewicz W., Kamela-Sowińska A., Poetschke H., Rachunkowość zarządcza, PWE, Warszawa

Bardziej szczegółowo

Rachunkowość zarządcza. Zespół Katedry Rachunkowości Menedżerskiej SGH 1. Wykorzystanie rachunku kosztów zmiennych. Dr Marcin Pielaszek

Rachunkowość zarządcza. Zespół Katedry Rachunkowości Menedżerskiej SGH 1. Wykorzystanie rachunku kosztów zmiennych. Dr Marcin Pielaszek Wykorzystanie rachunku kosztów zmiennych 1. Zmienność kosztów w długim i krótkim okresie Rachunek kosztów zmiennych i analiza koszty rozmiary produkcji zysk 2. Podejmowanie decyzji w krótkim okresie 1.

Bardziej szczegółowo

TEORIA DECYZJE KRÓTKOOKRESOWE

TEORIA DECYZJE KRÓTKOOKRESOWE TEORIA DECYZJE KRÓTKOOKRESOWE 1. Rozwiązywanie problemów decyzji krótkoterminowych Relacje między rozmiarami produkcji, kosztami i zyskiem wykorzystuje się w procesie badania opłacalności różnych wariantów

Bardziej szczegółowo

1.4. Uwarunkowania komodalności transportu... 33 Bibliografia... 43

1.4. Uwarunkowania komodalności transportu... 33 Bibliografia... 43 SPIS TREŚCI Przedmowa................................................................... 11 1. Wprowadzenie............................................................. 17 1.1. Pojęcie systemu logistycznego

Bardziej szczegółowo

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ.

WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. Wykład 1 Wprowadzenie do ekonomii menedżerskiej 1 WPROWADZENIE DO EKONOMII MENEDŻERSKIEJ. PODEJMOWANIE OPTYMALNYCH DECYZJI NA PODSTAWIE ANALIZY MARGINALNEJ. 1. EKONOMIA MENEDŻERSKA ekonomia menedżerska

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

Podstawy Informatyki Wykład VI

Podstawy Informatyki Wykład VI Podstawy Informatyki Wykład VI Arkusz kalkulacyjny Excel cz.ii Copyright by Arkadiusz Rzucidło 1 Bazy danych w Excel u Pole i rekord w bazie danych Baza danych w pakiecie Microsoft Excel jest to ciągły

Bardziej szczegółowo

Projektowanie logistyki magazynu

Projektowanie logistyki magazynu Projektowanie systemów transportowo-logistycznych! Projektowanie logistyki magazynu :: Projektowanie symulacyjne :: :: Zastosowanie EXTEND OR :: Piotr Sawicki Wydział Maszyn Roboczych i Transportu pok.

Bardziej szczegółowo

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych

Bardziej szczegółowo

dla rozwoju innowacyjnej gospodarki Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego

dla rozwoju innowacyjnej gospodarki Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego MACIERZ BCG ANALIZA I INTERPRETACJA dla rozwoju innowacyjnej gospodarki Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego Jesteś producentem telewizorów.

Bardziej szczegółowo

SIMPLE.APS optymalizacja w planowaniu produkcji

SIMPLE.APS optymalizacja w planowaniu produkcji SIMPLE.APS optymalizacja w planowaniu produkcji 23 czerwca 2010 Agenda: 1. Umiejscowienie SIMPLE.APS 2. Funkcjonalność 3. Tworzenie modelu: Definiowanie wydziałów produkcyjnych Definiowanie umiejętnosci

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

SCENARIUSZ TEMATYCZNY. Programowanie liniowe problem decyzyjny rozwiązywanie przy pomocy komputera

SCENARIUSZ TEMATYCZNY. Programowanie liniowe problem decyzyjny rozwiązywanie przy pomocy komputera SCENARIUSZ TEMATYCZNY OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

maj 2014 Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I

maj 2014 Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I Podstawy teorii optymalizacji Wykład 12 M. H. Ghaemi maj 2014 Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA EKONOMIA MENEDŻERSKA Koszt całkowity produkcji - Jest to suma kosztów stałych całkowitych i kosztów zmiennych całkowitych. K c = K s + K z Koszty stałe produkcji (K s ) to koszty, które nie zmieniają się

Bardziej szczegółowo

Optymalizacja programu produkcji

Optymalizacja programu produkcji ZARZĄDZANIE PRODUKCJĄ I USŁUGAMI Ćwiczenie 3 Optymalizacja programu produkcji Co i ile produkować i sprzedawać, aby zmaksymalizować zysk? Programowanie produkcji ZADANIE odpowiedź na pytania Co produkować?

Bardziej szczegółowo

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:

Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego: Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

Controlling operacyjny i strategiczny

Controlling operacyjny i strategiczny Controlling operacyjny i strategiczny dr Piotr Modzelewski Katedra Bankowości, Finansów i Rachunkowości Wydziału Nauk Ekonomicznych Uniwersytetu Warszawskiego Plan zajęć 1, 2. Wprowadzenie do zagadnień

Bardziej szczegółowo

łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.)

łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.) 14. Zadanie przydziału z ustalonym poziomem produkcji i limitowanym czasem pracy planowanie wielkości produkcji (wersja uproszczona) Producent może wytwarzać n rodzajów wyrobów. Każdy z wyrobów można być

Bardziej szczegółowo

KARTA PRZEDMIOTU. Język polski. Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. Język polski. Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/BOP Język polski Badania operacyjne Nazwa przedmiotu Język angielski operational research USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

1 AKTYWACJA POLECENIA SOLVER... 1 2 DO JAKICH ZADAŃ WYKORZYSTAMY SOLVERA?... 1 3 PROSTY PRZYKŁAD SOLVERA... 2 4 WIĘCEJ O SOLVERZE...

1 AKTYWACJA POLECENIA SOLVER... 1 2 DO JAKICH ZADAŃ WYKORZYSTAMY SOLVERA?... 1 3 PROSTY PRZYKŁAD SOLVERA... 2 4 WIĘCEJ O SOLVERZE... Analiza danych przy użyciu Solvera Informatyka ekonomiczna laboratorium Spis treści 1 AKTYWACJA POLECENIA SOLVER... 1 2 DO JAKICH ZADAŃ WYKORZYSTAMY SOLVERA?... 1 3 PROSTY PRZYKŁAD SOLVERA... 2 4 WIĘCEJ

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 1 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie liniowe Cel ćwiczenia: Opanowanie umiejętności modelowania i rozwiązywania problemów

Bardziej szczegółowo

Maksymalizacja zysku

Maksymalizacja zysku Maksymalizacja zysku Na razie zakładamy, że rynki są doskonale konkurencyjne Firma konkurencyjna traktuje ceny (czynników produkcji oraz produktów jako stałe, czyli wszystkie ceny są ustalane przez rynek

Bardziej szczegółowo

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy

Bardziej szczegółowo

Modelowanie przy uŝyciu arkusza kalkulacyjnego

Modelowanie przy uŝyciu arkusza kalkulacyjnego Wydział Odlewnictwa Wirtualizacja technologii odlewniczych Modelowanie przy uŝyciu Projektowanie informatycznych systemów zarządzania 2Modelowanie przy uŝyciu Modelowania przy uŝyciu Wprowadzenie Zasady

Bardziej szczegółowo

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego. Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość

Bardziej szczegółowo

Optymalizacja liniowa w liczbach całkowitych (PLC)

Optymalizacja liniowa w liczbach całkowitych (PLC) * ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału

Bardziej szczegółowo

Model Matematyczny Call Center

Model Matematyczny Call Center OFERTA SZKOLENIOWA Model Matematyczny Call Center TELEAKADEMIA to profesjonalne centrum szkoleniowe mające swoją siedzibę w Pomorskim Parku Naukowo-Technologicznym w Gdyni. TELEAKADEMIA realizuje szkolenia

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH. I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji

KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH. I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH Opracowanie: mgr inż. Dorota Bargieł-Kurowska I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji Producent, podejmując decyzję:

Bardziej szczegółowo

Dystrybucja i planowanie dostaw

Dystrybucja i planowanie dostaw Terminy szkolenia 15-16 październik 2015r., Kraków - Hotel Aspel*** Dystrybucja i planowanie dostaw 7-8 kwiecień 2016r., Poznań - Hotel Platinum Palace Residence**** Opis Efektywna dystrybucja produktów

Bardziej szczegółowo

PODSTAWY ZARZĄDZANIA PROJEKTAMI

PODSTAWY ZARZĄDZANIA PROJEKTAMI Bogdan Miedziński PODSTAWY ZARZĄDZANIA PROJEKTAMI Dorocie żonie, wiernej towarzyszce życia 1 SPIS TREŚCI Wstęp................................................. 9 1. Zarządzanie projektami z lotu ptaka....................

Bardziej szczegółowo

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Badania Operacyjne w Informatyce Operations Research in Computer Science

Bardziej szczegółowo

Zadanie transportowe

Zadanie transportowe Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii

Bardziej szczegółowo

Organizacyjny aspekt projektu

Organizacyjny aspekt projektu Organizacyjny aspekt projektu Zarządzanie funkcjonalne Zarządzanie między funkcjonalne Osiąganie celów poprzez kierowanie bieżącymi działaniami Odpowiedzialność spoczywa na kierownikach funkcyjnych Efektywność

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

ANALIZA WRAŻLIWOŚCI OPTYMALNEGO WYBORU ASORTYMENTU PRODUKCJI ZAKŁADU ODLEWNICZEGO

ANALIZA WRAŻLIWOŚCI OPTYMALNEGO WYBORU ASORTYMENTU PRODUKCJI ZAKŁADU ODLEWNICZEGO 18/6 ARCHIWUM ODLEWNICTWA Rok 2002, Rocznik 2, Nr 6 Archives of Foundry Year 2002, Volume 2, Book 6 PAN - Katowice PL ISSN 1642-5308 ANALIZA WRAŻLIWOŚCI OPTYMALNEGO WYBORU ASORTYMENTU PRODUKCJI ZAKŁADU

Bardziej szczegółowo

Instrukcja z przedmiotu: Zarządzanie dokumentacją techniczną

Instrukcja z przedmiotu: Zarządzanie dokumentacją techniczną Dr inż. Joanna Bartnicka Instrukcja z przedmiotu: Zarządzanie dokumentacją techniczną Temat laboratorium: SPORZĄDZENIE WARIANTÓW ROZMIESZCZENIA ELEMENTÓW W ZAMKNIĘTEJ PRZESTRZENI DLA ZADANYCH KRYTERIÓW

Bardziej szczegółowo