NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica."

Transkrypt

1 Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural Network) Joanna Długosz BIBLIOTEKA FANN (FAST ARTIFICIAL NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać w C, C++, PHP, Pythonie, Delphi a nawet w środowisku Mathematica. Biblioteka FANN została stworzona przez Steffena Nissena informatyka z Danii. Została ona udostępniona przez niego w 2003 roku. Z początku była dostępna tylko dla Linuxa. Obecnie dostępna jest w większości kompilatorów i systemów operacyjnych.

2 BIBLIOTEKA FANN (FAST ARTIFICIAL NEURAL NETWORK ) Podstawowe funkcje FANN: fann_create tworzenie sieci fann_train_on_file uczenie się sieci na podstawie pliku treningowego fann_save zapis pod określoną nazwą fann_destroy koniec pracy z siecią struct fann *ann_create (float connection_rate, float learning_rate, unisigned int num_layers,) jest stosowana do tworzenia SSN, parametr connection_rate moŝe być uŝyty do utworzenia SSN nie w pełni połączonej, zaślearning_rate stosowany jest do określenia intensywności procesu uczenia. Ostatni parametr num_layers słuŝy do zdefiniowania układu warstw w SNN. ROZPOZNAWANIE JĘZYKA Jedną z metod na rozpoznanie języka jest analiza częstotliwości występowania w tekście liter alfabetu. Dla języków europejskich wystarczy wziąć pod uwagę częstotliwość występowania tylko liter A-Z, pomimo nawet tego, Ŝe wiele języków wykorzystuje równieŝ inne litery. Z pomocą biblioteki FANN napisanie programu, którego zadaniem będzie określenie, w jakim języku został napisany dany plik tekstowy, jest niezwykle proste. Zastosowana w tym celu SSN powinna mieć neuron wejściowy dla kaŝdej z 26 liter i jeden neuron wyjściowy dla kaŝdego języka.

3 I. Napisanie programu mierzącego częstotliwość występowania liter w pliku tekstowym II. Wygenerowanie pliku trenującego PoniŜszy obraz pokazuje fragment zawartości pliku trenującego, wygenerowanego przy uŝyciu czterech plików tekstowych dla kaŝdego z trzech języków.

4 II. Wygenerowanie pliku trenującego Plik zapisujemy pod nazwą frequencies.data Uśrednione częstotliwości występowania liter w językach francuskim, polskim angielskim III. Tworzenie programu uczącego sieć Liczba warstw oraz neuronów w warstwie ukrytej zostały dobrane eksperymentalnie poprzez sprawdzenie kilku moŝliwych konfiguracji tylko konfiguracja 13 neuronów potrafiła sprostać parametrom uczenia. Wynik nauczania zapisujemy do pliku: klasyfikacja_jezykow

5 III. Tworzenie programu uczącego sieć Wyjście FANN podczas trenowania: Liczba epok w zaleŝności od uŝytego algorytmu uczenia: Rodzaj algorytmu Domyślnyrprop Incremental Batch Quickprop (przy zwiększeniu czasu działania algorytmu) Ilość epok IV. Tworzenie programu klasyfikującego tekst PoniŜszy program wczytuje zachowaną SSN i uŝywa jej do klasyfikowania tekstu jako angielski, francuski lub polski. Korzysta z niektórych funkcji utworzonych w Kroku I oraz z pliku zawierającego wyniki uczenia.

6 IV. Tworzenie programu klasyfikującego tekst Wynik działania programu: KONIEC

Przez lata fi lmy science-fi ction, takie jak

Przez lata fi lmy science-fi ction, takie jak Steffen Nissen Tworzenie sieci neuronowych to proste Na CD: Na płycie CD zamieściliśmy omawianą bibliotekę oraz listingi użyte w tym artykule. Przez lata fi lmy science-fi ction, takie jak Ja, Robot pochodzące

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

Sieci neuronowe - dokumentacja projektu

Sieci neuronowe - dokumentacja projektu Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

ZESZYTY NAUKOWE WSOWL. Nr 4 (162) 2011 ISSN NAUKI EKONOMICZNE

ZESZYTY NAUKOWE WSOWL. Nr 4 (162) 2011 ISSN NAUKI EKONOMICZNE ZESZYTY NAUKOWE WSOWL Nr 4 (162) 2011 ISSN 1731-8157 NAUKI EKONOMICZNE Artur DUCHACZEK Dariusz SKORUPKA ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W SYSTEMACH WSPOMAGANIA DECYZJI Z OBSZARU ZARZĄDZANIA LOGISTYKĄ

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji

Podstawy Sztucznej Inteligencji Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab

Bardziej szczegółowo

Ćw. IV. Tworzenie stron internetowych. Podstawy projektowania, wprowadzenie do języka HTML

Ćw. IV. Tworzenie stron internetowych. Podstawy projektowania, wprowadzenie do języka HTML Ćw. IV. Tworzenie stron internetowych. Podstawy projektowania, wprowadzenie do języka HTML Zad.1 Zapoznaj się z poniŝszymi artykułami dotyczącymi projektowania stron WWW:. http://galeria.muzykaduszy.pl/zasady.php

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Politechnika Lubelska

Politechnika Lubelska Politechnika Lubelska Wydział Zarządzania i Podstaw Techniki Temat: Sieć neuronowa do klasyfikacji rodzaju węgla kamiennego. Prowadzący: Wykonał: Dr Popko Artur Marek Harasimiuk ETI 5.3. (gr. lab. 5.5)

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

AUTOMATYKA INFORMATYKA

AUTOMATYKA INFORMATYKA AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE

INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Studia podyplomowe dla nauczycieli INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Przedmiot JĘZYKI PROGRAMOWANIA DEFINICJE I PODSTAWOWE POJĘCIA Autor mgr Sławomir Ciernicki 1/7 Aby

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

ĆWICZENIE 5: Sztuczne sieci neuronowe

ĆWICZENIE 5: Sztuczne sieci neuronowe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold

Bardziej szczegółowo

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

6. Perceptron Rosenblatta

6. Perceptron Rosenblatta 6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 6 Sztuczne sieci neuronowe (SSN) 04 stycznia 2012 Plan wykładu 1 Uczenie sieci neuronowej wielowarstwowej 2 3 Uczenie nadzorowanie sieci wielowarstwowej Wagi Inteligencja sztucznej sieci neuronowe

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie)

MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) MATLAB Neural Network Toolbox uczenie sieci (dogłębnie) WYKŁAD Piotr Ciskowski Neural Network Toolbox: NEURAL NETWORK TOOLBOX NOTACJA Neural Network Toolbox - notacja: pojedynczy neuron: z jednym wejściem

Bardziej szczegółowo

Wykorzystanie protokołu SCEP do zarządzania certyfikatami cyfrowymi w systemie zabezpieczeń Check Point NGX

Wykorzystanie protokołu SCEP do zarządzania certyfikatami cyfrowymi w systemie zabezpieczeń Check Point NGX Wykorzystanie protokołu SCEP do zarządzania certyfikatami cyfrowymi w systemie zabezpieczeń Check Point NGX 1. Wstęp Protokół SCEP (Simple Certificate Enrollment Protocol) został zaprojektowany przez czołowego

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

Komunikacja Master-Slave w protokole PROFIBUS DP pomiędzy S7-300/S7-400

Komunikacja Master-Slave w protokole PROFIBUS DP pomiędzy S7-300/S7-400 PoniŜszy dokument zawiera opis konfiguracji programu STEP7 dla sterowników S7 300/S7 400, w celu stworzenia komunikacji Master Slave z wykorzystaniem sieci PROFIBUS DP pomiędzy sterownikami S7 300 i S7

Bardziej szczegółowo

1 Podstawy programowania sieci neuronowych w programie Matlab 7.0

1 Podstawy programowania sieci neuronowych w programie Matlab 7.0 1 Podstawy programowania sieci neuronowych w programie Matlab 7.0 1.1 Wczytanie danych wejściowych Pomocny przy tym będzie program Microsoft Excel. W programie tym obrabiamy wstępnie nasze dane poprzez

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sieci neuronowe Paweł Bęczkowski ETI 9.1 1 Czym określamy sztuczną sieć neuronową Sieć neuronowa (sztuczna sieć neuronowa) to ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWYCH DO ODWZOROWANIA DEFORMACJI POWIERZCHNI NA TERENACH GÓRNICZYCH

WYKORZYSTANIE SIECI NEURONOWYCH DO ODWZOROWANIA DEFORMACJI POWIERZCHNI NA TERENACH GÓRNICZYCH IZABELA SKRZYPCZAK, DAWID ZIENTEK WYKORZYSTANIE SIECI NEURONOWYCH DO ODWZOROWANIA DEFORMACJI POWIERZCHNI NA TERENACH GÓRNICZYCH THE APPLICATION OF NEURAL NETWORKS FOR PROJECTION OF SURFACES DEFORMATIONS

Bardziej szczegółowo

Tablicę 2-wymiarową można przedstawić jako pewien zestaw tablic 1-wymiarowych np.:

Tablicę 2-wymiarową można przedstawić jako pewien zestaw tablic 1-wymiarowych np.: emat zajęć: ablice wielowymiarowe i struktury w języku C Autor: mgr inż. Sławomir Samolej Zagadnienie 1. (ablice liczbowe wielowymiarowe) ablicę 2-wymiarową można przedstawić jako pewien zestaw tablic

Bardziej szczegółowo

Temat 1: Podstawowe pojęcia: program, kompilacja, kod

Temat 1: Podstawowe pojęcia: program, kompilacja, kod Temat 1: Podstawowe pojęcia: program, kompilacja, kod wynikowy. Przykłady najprostszych programów. Definiowanie zmiennych. Typy proste. Operatory: arytmetyczne, przypisania, inkrementacji, dekrementacji,

Bardziej szczegółowo

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W

Bardziej szczegółowo

Od programowania wizualnego do tekstowego

Od programowania wizualnego do tekstowego Od programowania wizualnego do tekstowego Krzysztof Chechłacz Nowa podstawa programowa z informatyki w świetle reformy oświaty - Konferencja w ramach XII edycji Akademii Technologii Informacyjnej i Komunikacyjnej

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy.

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy. 1. Kalkulator czterech działań. Kalkulator czterech działań: +, -, *, \ (bez nawiasów). Wejście: łańcuch znakowy, np. 1+2*3\4-5\2=, -2+4e-1= Liczby mogą być w formacie, np. +1.45, -2, 1e-10. 2. Konwersja

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA. z przedmiotu. Programowanie strukturalne i obiektowe. dla technikum informatycznego

PRZEDMIOTOWY SYSTEM OCENIANIA. z przedmiotu. Programowanie strukturalne i obiektowe. dla technikum informatycznego PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Programowanie strukturalne i obiektowe dla technikum informatycznego Zespół Szkół Ogólnokształcących i Technicznych w Słupsku Krzysztof Smoliński 1. Uczniowie

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++ Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu

Bardziej szczegółowo

Optymalizacja optymalizacji

Optymalizacja optymalizacji 7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce

Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Wykład 5. Cel wykładu. Korespondencja seryjna. WyŜsza Szkoła MenedŜerska w Legnicy. Informatyka w zarządzaniu Zarządzanie, zaoczne, sem.

Wykład 5. Cel wykładu. Korespondencja seryjna. WyŜsza Szkoła MenedŜerska w Legnicy. Informatyka w zarządzaniu Zarządzanie, zaoczne, sem. Informatyka w zarządzaniu Zarządzanie, zaoczne, sem. 3 Wykład 5 MS Word korespondencja seryjna Grzegorz Bazydło Cel wykładu Celem wykładu jest omówienie wybranych zagadnień dotyczących stosowania korespondencji

Bardziej szczegółowo

Komunikator internetowy w C#

Komunikator internetowy w C# PAŃSTWOWA WYśSZA SZKOŁA ZAWODOWA W ELBLĄGU INSTYTUT INFORMATYKI STOSOWANEJ Sprawozdanie Komunikator internetowy w C# autor: Artur Domachowski Elbląg, 2009 r. Komunikacja przy uŝyciu poczty internetowej

Bardziej szczegółowo

Warszawa, maj 2008 r.

Warszawa, maj 2008 r. Informacje do przygotowania aplikacji grupera na potrzeby szpitalnych systemów informatycznych umoŝliwiającego kwalifikację rekordu pacjenta do właściwej grupy systemu Jednorodnych Grup Pacjentów. Warszawa,

Bardziej szczegółowo

z poradni pedagogicznej

z poradni pedagogicznej Kryteria oceniania zajęć komputerowych w klasach kształcenia zintegrowanego dla dzieci z opiniami z poradni pedagogicznej Zajęcia z informatyki są ćwiczeniami praktycznymi, które łączą zabawę z nauką,

Bardziej szczegółowo

Metodyki i Techniki Programowania 1 1 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA

Metodyki i Techniki Programowania 1 1 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA Metodyki i Techniki Programowania 1 1 ZAJ CIA 3. 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA IDE zintegrowane środowisko programistyczne, zawierające kompilator, edytor tekstu i linker,

Bardziej szczegółowo

Być może jesteś doświadczonym programistą, biegle programujesz w Javie,

Być może jesteś doświadczonym programistą, biegle programujesz w Javie, Kompendium PHP 01 Być może jesteś doświadczonym programistą, biegle programujesz w Javie, C++, Pythonie lub jakimś innym języku programowania, których jak myślę, powstało już tyle, że chyba nie ma osoby,

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

Automatyka i Robotyka, V rok. promotor: dr Adrian Horzyk. Kraków, 3 czerwca System automatycznego rozpoznawania

Automatyka i Robotyka, V rok. promotor: dr Adrian Horzyk. Kraków, 3 czerwca System automatycznego rozpoznawania Automatyka i Robotyka, V rok Kraków, 3 czerwca 2009 promotor: dr Adrian Horzyk 1 2 i problemy 3 4 Technologie 5 Wyniki 6 Podział biometrii 7 cech opisujących parametry ludzi - A. K. Jain uniwersalność

Bardziej szczegółowo

Informatyka- wykład. Podstawy programowania w Pythonie. dr Marcin Ziółkowski

Informatyka- wykład. Podstawy programowania w Pythonie. dr Marcin Ziółkowski Informatyka- wykład Podstawy programowania w Pythonie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 23 listopada 2015 r. JĘZYK PYTHON Język Python jest

Bardziej szczegółowo

Komponent Formularz. Rys. 1. Strona programu Joomla - http://joomla.pl. Rys. 2. Instalacja komponentu

Komponent Formularz. Rys. 1. Strona programu Joomla - http://joomla.pl. Rys. 2. Instalacja komponentu Komponent Formularz Instalacja Aby wykorzystać gotowy komponent do tworzenia formularzy w systemie CMS (Joomla), naleŝy uprzednio zaimplementować go, postępując według poniŝszego schematu: 1. Wejść na

Bardziej szczegółowo

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2 InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Program Opakowania zwrotne dla InsERT GT.

Program Opakowania zwrotne dla InsERT GT. Program Opakowania zwrotne dla InsERT GT. Do czego słuŝy program? Program Opakowania zwrotne słuŝy do zarządzania opakowaniami zwrotnymi (butelkami, transporterami) w firmach handlujących napojami. Pozwala

Bardziej szczegółowo

Narzędzia administracyjne Windows XP

Narzędzia administracyjne Windows XP Narzędzia administracyjne Windows XP Msconfig.exe - konfiguracja systemu Narzędzie konfiguracji systemu (Msconfig.exe) automatyzuje rutynowe kroki podejmowane przez pracowników Pomocy technicznej firmy

Bardziej szczegółowo

Polcode Code Contest PHP-10.09

Polcode Code Contest PHP-10.09 Polcode Code Contest PHP-10.09 Przedmiotem konkursu jest napisanie w języku PHP programu, którego wykonanie spowoduje rozwiązanie zadanego problemu i wyświetlenie rezultatu. Zadanie konkursowe Celem zadania

Bardziej szczegółowo

Bankowość elektroniczna

Bankowość elektroniczna Bankowość elektroniczna MICROSOFT DYNAMICS NAV SYSTEMY BANKOWE Wszystkie firmy na rynku zobowiązane są do posiadania konta w banku. Natomiast tylko niewielka ich część korzysta z dobrodziejstw jakie dają

Bardziej szczegółowo

Słowa kluczowe jak góry lodowe

Słowa kluczowe jak góry lodowe Public Słowa kluczowe jak góry lodowe czyli rzecz o bibliotekach testowych Marcin Kowalczyk marcin.kowalczyk@tieto.com Spis treści Dlaczego słowa kluczowe są jak góry lodowe, po co tworzyć własne biblioteki

Bardziej szczegółowo

BANKOWOŚĆ ELEKTRONICZNA. Opis i specyfikacja techniczna programu translatora Bph2Pekao

BANKOWOŚĆ ELEKTRONICZNA. Opis i specyfikacja techniczna programu translatora Bph2Pekao BANKOWOŚĆ ELEKTRONICZNA Opis i specyfikacja techniczna programu translatora Bph2Pekao 1 Opis programu Bph2Pekao.exe 1. Wymagania Komputer klasy Pentium z systemem Windows Microsoft 2. ZałoŜenie Program

Bardziej szczegółowo

76.Struktura oprogramowania rozproszonego.

76.Struktura oprogramowania rozproszonego. 76.Struktura oprogramowania rozproszonego. NajwaŜniejsze aspekty obiektowego programowania rozproszonego to: Współdziałanie (interoperability) modułów programowych na róŝnych maszynach. Wielokrotne wykorzystanie

Bardziej szczegółowo

Wykład V. Rzut okiem na języki programowania. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład V. Rzut okiem na języki programowania. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład V Rzut okiem na języki programowania 1 Kompilacja vs. interpretacja KOMPILACJA Proces, który przetwarza program zapisany w języku programowania,

Bardziej szczegółowo

Szablony funkcji i szablony klas

Szablony funkcji i szablony klas Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2011 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum Lp. Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum 1. Internet i sieci [17 godz.] 1 Sieci komputerowe. Rodzaje sieci, topologie, protokoły transmisji danych w sieciach. Internet jako sie rozległa

Bardziej szczegółowo

Szablony funkcji i klas (templates)

Szablony funkcji i klas (templates) Instrukcja laboratoryjna nr 3 Programowanie w języku C 2 (C++ poziom zaawansowany) Szablony funkcji i klas (templates) dr inż. Jacek Wilk-Jakubowski mgr inż. Maciej Lasota dr inż. Tomasz Kaczmarek Wstęp

Bardziej szczegółowo

Przykład optymalizacji struktury sztucznej sieci neuronowej metodą algorytmów genetycznych

Przykład optymalizacji struktury sztucznej sieci neuronowej metodą algorytmów genetycznych BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 23, 26 Przykład optymalizacji struktury sztucznej sieci neuronowej metodą algorytmów genetycznych Leszek Grad Zakład Automatyki, Instytut Teleinfo rmatyki i

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

Grzegorz Cygan. Wstęp do programowania mikrosterowników w języku C

Grzegorz Cygan. Wstęp do programowania mikrosterowników w języku C Grzegorz Cygan Wstęp do programowania mikrosterowników w języku C Mikrosterownik Inne nazwy: Microcontroler (z języka angielskiego) Ta nazwa jest powszechnie używana w Polsce. Mikrokomputer jednoukładowy

Bardziej szczegółowo

XV. Wskaźniki Odczytywanie adresu pamięci istniejących zmiennych Wskaźniki pierwsze spojrzenie.

XV. Wskaźniki Odczytywanie adresu pamięci istniejących zmiennych Wskaźniki pierwsze spojrzenie. XV. Wskaźniki 15.1. Odczytywanie adresu pamięci istniejących zmiennych Język C++ w bardzo łatwy sposób umoŝliwia nam pobieranie adresu pamięci wybranych zmiennych. Wskaźnik zajmuje zazwyczaj 4 bajty bez

Bardziej szczegółowo

TRZECIA CZĘŚĆ EGZAMINU GIMNAZJALNEGO. JĘZYKI OBCE NOWOśYTNE

TRZECIA CZĘŚĆ EGZAMINU GIMNAZJALNEGO. JĘZYKI OBCE NOWOśYTNE TRZECIA CZĘŚĆ EGZAMINU GIMNAZJALNEGO JĘZYKI OBCE NOWOśYTNE ZASADY PRZEPROWADZNIA TRZECIEJ CZĘŚCI EGZAMINU GIMNAZJALNEGO Z JĘZYKA OBCEGO NOWOśYTNEGO OD 2012 ROKU Języki obce nowoŝytne Zgodnie z 35 ust 1

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Serwis Członkowski Polskiej Izby Ubezpieczeń Instrukcja obsługi UŜytkownik

Serwis Członkowski Polskiej Izby Ubezpieczeń Instrukcja obsługi UŜytkownik Serwis Członkowski Polskiej Izby Ubezpieczeń Instrukcja obsługi UŜytkownik I SERWIS CZŁONKOWSKI Aby zalogować się do Serwisu Członkowskiego Polskiej Izby Ubezpieczeń naleŝy wejść na stronę główną PIU www.piu.org.pl

Bardziej szczegółowo

11. Blok ten jest blokiem: a. decyzyjnym b. końcowym c. operacyjnym

11. Blok ten jest blokiem: a. decyzyjnym b. końcowym c. operacyjnym 1. Instrukcja warunkowa a. słuŝy do wprowadzania danych oraz wprowadzania wyników b. to instrukcja decyzyjna c. to sposób przedstawienia algorytmu 2. Instrukcja, która opisuje wykonanie róŝnych czynności

Bardziej szczegółowo

INFORMATYKA TECHNICZNA Badanie możliwości wykorzystania języka AutoLISP i środowiska VisualLISP w systemie CAx

INFORMATYKA TECHNICZNA Badanie możliwości wykorzystania języka AutoLISP i środowiska VisualLISP w systemie CAx INFORMATYKA TECHNICZNA Badanie możliwości wykorzystania języka AutoLISP i środowiska VisualLISP w systemie CAx 1. WPROWADZENIE Program AutoCAD ma wielu użytkowników i zajmuje znaczące miejsce w graficznym

Bardziej szczegółowo

Rejestr MR/TK www.mrct-registry.org. Rejestr MR/TK. Instrukcja uŝytkownika. ESCR European Society of Radiology www.escr.org

Rejestr MR/TK www.mrct-registry.org. Rejestr MR/TK. Instrukcja uŝytkownika. ESCR European Society of Radiology www.escr.org Rejestr MR/TK Instrukcja uŝytkownika 1 Spis treści I. Log In... 3 II. Formularz Rejestracji Zakładu... 4 III. Formularz rejestracji uŝytkownika... 5 IV. Strona logowania... 6 V. Dane rejestrowe... 7 VI.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z ZAJĘĆ KOMPUTEROWYCH KLASA 4:

WYMAGANIA EDUKACYJNE Z ZAJĘĆ KOMPUTEROWYCH KLASA 4: WYMAGANIA EDUKACYJNE Z ZAJĘĆ KOMPUTEROWYCH KLASA 4: zna regulamin pracowni komputerowej; bezpiecznie obchodzi się z komputerem; zna urządzenia wchodzące w skład zestawu komputerowego; poprawnie obsługuje

Bardziej szczegółowo

Algorytmika i pseudoprogramowanie

Algorytmika i pseudoprogramowanie Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

biegle i poprawnie posługuje się terminologią informatyczną,

biegle i poprawnie posługuje się terminologią informatyczną, INFORMATYKA KLASA 1 1. Wymagania na poszczególne oceny: 1) ocenę celującą otrzymuje uczeń, który: samodzielnie wykonuje na komputerze wszystkie zadania z lekcji, wykazuje inicjatywę rozwiązywania konkretnych

Bardziej szczegółowo

Program dopisujący gwiazdkę na końcu pliku tekstowego o nazwie podanej przez uŝytkownika oraz wypisujący zawartość tego pliku.

Program dopisujący gwiazdkę na końcu pliku tekstowego o nazwie podanej przez uŝytkownika oraz wypisujący zawartość tego pliku. Program 7 Program dopisujący gwiazdkę na końcu pliku tekstowego o nazwie podanej przez uŝytkownika oraz wypisujący zawartość tego pliku. #include #include using namespace std; int main()

Bardziej szczegółowo