Nowoczesne techniki. Korozja jest zjawiskiem tak powszechnym. w badaniach korozyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nowoczesne techniki. Korozja jest zjawiskiem tak powszechnym. w badaniach korozyjnych"

Transkrypt

1 LABORATORIUM PRZEMYSŁOWE LABORATORIUM 3-4/2015 fot. Thinkstock Nowoczesne techniki w badaniach korozyjnych STRESZCZENIE W artykule przedstawiono wybrane nowoczesne techniki stosowane w badaniach korozyjnych w celu określania zarówno przyczyn, mechanizmu, jak i skutków korozji. Przegląd technik stosowanych we współczesnych badaniach materiałów pod kątem zniszczeń korozyjnych uświadamia szybki rozwój metod badawczych. SŁOWA KLUCZOWE nowoczesne techniki, badania korozyjne, techniki optyczne, techniki polaryzacyjne, techniki spektroskopowe SUMMARY Paper presents selected modern techniques used in corrosion research to identify both the causes, mechanisms and effects of corrosion. Overview of the techniques used in contemporary materials research for corrosion damage gives an overview of the rapid development of research methods. KEYWORDS modern technology, corrosion tests, optical techniques, technology polarized spectroscopic techniques dr Urszula Lelek-Borkowska KATEDRA CHEMII I KOROZJI METALI, WYDZIAŁ ODLEWNICTWA, AKADEMIA GÓRNICZO-HUTNICZA, KRAKÓW Korozja jest zjawiskiem tak powszechnym i znanym, iż wydaje się, że niewiele nowego można na jej temat powiedzieć. Tymczasem koszty związane ze zniszczeniami korozyjnymi i zapobieganiem korozji są ogromne. Wg raportu amerykańskiego stowarzyszenia inżynierów zajmujących się korozją NACE (National Association of Corrosion Engineers) tylko w 2002 roku ogólne koszty związane z korozją wyniosły w USA 276 mld dolarów, co stanowi 3,1% PKB tego kraju. [1]. W 2012 roku Światowa Organizacja Korozyjna oszacowała ogólnoświatowe koszty związane z korozją na sumę 2,2 tryliona dolarów, dlatego tak ważne są badania mające na celu zapobiec korozji lub w jak największym stopniu zmniejszyć jej skutki. Badania korozyjne prowadzono już w wieku XIX [2], jednakże największy ich rozkwit przypadł na czasy tuż po II wojnie światowej. Wybitnie przyczynił się do tego Marcel Pourbaix, pomysłodawca diagramów E-pH pozwalających przewidzieć zachowania korozyjne metali w roztworach wodnych [3]. Do najstarszych metod badań korozyjnych zalicza się techniki wizualne, czyli szacowanie zniszczeń korozyjnych na podstawie obserwacji przy pomocy szkła powiększającego, lupy czy też mikroskopu optycznego. Tradycyjna technika wyznaczania szybkości korozji polega na pomiarze ubytku masy. Technika ta jest jedną z najprostszych stosowanych do tej pory. Jest jednak techniką destrukcyjną badany materiał musi ulec zniszczeniu. Niniejszy artykuł przedstawia szereg nowoczesnych technik, które w szybki sposób pozwalają zbadać przyczyny, mechanizmy, jak i skutki korozji. TECHNIKI OPTYCZNE Jedną z technik obrazowania skorodowanej powierzchni jest SEM (Scaning Electron Microscopy) skaningowa spektroskopia elektronowa, stosowana często w zestawieniu z techniką EDS (EDS Energy Dispersive X-ray Spectrometry) lub EDX (Energy Dispersive X-ray Analysis). W skaningowym mikroskopie elektronowym z mikroanalizatorem rentgenowskim badaną powierzchnię bombarduje się strumieniem szybkich elektronów o odpowiedniej energii. Powoduje to szereg zjawisk, między innymi wzbudzenie atomów na powierzchni próbki i emisję promieniowania rentgenowskiego. Promieniowanie to jest następnie analizowane za pomocą spektrometru 39

2 Fot.1. Zdjęcie SEM z analizą EDX powierzchni Ti trawionej w roztworze metanol 0,1 M CH 3 ONa Fot. 2. Przekrój poprzeczny przez warstewkę produktów korozji utworzonych na stali w instalacji geotermalnej Rys.1. Obraz warstwy powierzchniowej powstałej na krzemie, wykonany techniką mikroskopii sił atomowych AFM rentgenowskiego. Długość fali promieniowania, charakterystyczna dla poszczególnych pierwiastków, mówi o składzie powierzchni badanego materiału, natomiast jej intensywność o ilości danego pierwiastka w warstwie powierzchniowej. Topografię badanej próbki poznaje się poprzez analizę elektronów wstecznych rozproszonych [4, 6]. Fot. 1 przedstawia zdjęcie powierzchni tytanu trawionego w metanolu. Mikroskopia skaningowa pozwala nie tylko na analizę powierzchni warstwy korozyjnej, daje także możliwość zbadania grubości warstwy i jej struktury wewnętrznej. Możliwe jest to dzięki zdjęciom cross section, czyli przekroju poprzecznego badanego materiału. Fot. 2 prezentuje przekrój przez warstwę produktów korozji powstałych na stali stosowanej do produkcji rur w instalacjach geotermalnych. Inną z metod mikroskopowego obrazowania warstw korozyjnych na powierzchni ciał stałych jest mikroskopia sił atomowych AFM (Atomic Force Microscopy). W metodzie tej bardzo cienkie ostrze (grubość ok. 1 m, długość ok. 0 m) wykonane z odpowiedniego materiału (np. tlenek krzemu, azotek krzemu, diament), Rys. 2. Krzywe chronowoltamperometryczne dla stali w wodnym roztworze Na 2 uzyskane podczas nasycania roztworów różnymi gazami w podwyższonej temperaturze przymocowane do dźwigni, przesuwa się w bardzo małej odległości od powierzchni próbki [7]. Najbardziej wysunięte atomy ostrza oddziałują z atomami próbki, co powoduje ugięcie dźwigni. Czujniki ugięcia dźwigni, z których najczęściej stosowane są czujniki interferometryczne i oparte na pomiarze ugięcia wiązki światła odbitego od powierzchni dźwigni (beam deflection), pozwalają otrzymać trójwymiarowy obraz badanej warstwy w skali atomowej. Mikroskopia AFM pozwala na dokładne określenie topografii powierzchni warstwy korozyjnej. Rys. 1 przedstawia obraz warstwy powierzchniowej powstałej na krzemie, wykonany techniką AFM. TECHNIKI POLARYZACYJNE Z krzywych i(e) otrzymywanych techniką CV można odczytać wiele wiadomości dotyczących badanego układu. Powtarzalność krzywych wskazuje na odwracalność badanego procesu. Liczba pików prądowych wskazuje na liczbę etapów procesu. Analizując krzywe uzyskane w tym samym układzie dla różnych stężeń depolaryzatora, można określić rząd reakcji. Kształt krzywej wskazuje Fot. 3. Warstwa korozyjna powstała podczas symulacji przepływu przy użyciu techniki RDE na to, czy powierzchnia elektrody ulega pasywacji, czy też transpasywnemu rozpuszczaniu. Rys. 2 przedstawia krzywe chronowoltamperometryczne uzyskane dla stali wysokochromowej w wodnym roztworze siarczanu(vi) sodu w podwyższonej temperaturze, w obojętnej atmosferze argonu oraz w roztworze nasycanym tlenkiem węgla(iv) oraz mieszanką gazową CO 2 + H 2 S. Metoda wirującej elektrody dyskowej (RDE Rotating Disc Electrode) oraz wirująca elektroda dyskowa z pierścieniem (RRDE Rotating Ring Disc Electrode) to techniki stosowane do symulacji procesów zachodzących w warunkach hydrodynamicznych. Elektroda robocza wiruje z określoną prędkością obrotową, indukując strumień elektrolitu w kierunku przeciwnym do elektrody. Szybkość przepływu roztworu można regulować przez zmianę prędkości kątowej. Technika ta stosowana jest do poznawania mechanizmów reakcji w przepływach. Fot. 3 przedstawia obraz zniszczeń korozyjnych elektrody ze stali konstrukcyjnej podczas badań w symulowanej cieczy szczelinującej stosowanej w procesie wydobywania gazu łupkowego.

3 50 0,1M Na 2, -1,2 V 0,1M Na 2, -1,2V 1A 111A - Z im, cm A 111A I Z I, cm , degree Z real, cm f, Hz - Rys. 3. Diagramy Nyquista i Bodego dla warstwy cynkowej na stali konstrukcyjnej w środowisku obojętnym Elektrochemiczna Spektroskopia Impedancyjna (EIS) jest metodą stosowaną do badania bardzo szybkich reakcji elektrodowych. W technice tej przykłada się niewielki sygnał napięcia zmiennego (sinusoidalnego) do badanej elektrody i rejestruje odpowiedź prądową [8]. Amplituda napięcia przemiennego powinna być na tyle mała, aby odcinek krzywej polaryzacji, na którym zachodzą pojedyncze zmiany potencjału badanej elektrody, można było z dostatecznym przybliżeniem uznać za liniowy. Jeżeli proces elektrodowy jest badany przy potencjale różnym od potencjału równowagi elektrody, niezbędna jest jednoczesna polaryzacja napięciem stałym. W wyniku modulacji przyłożonego napięcia stałego napięciem przemiennym potencjał elektrody oscyluje wokół stałej wartości. Zależność między przyłożonym potencjałem i przepływającym prądem nazywamy impedancją. Tak, jak opór dla obwodu prądu stałego, tak impedancja jest miarą zdolności układu do oporu przeciwko przepływowi prądu zmiennego. Wartość impedancji ( Z ) jest czasem nazywana modułem impedancji. Urządzenie pomiarowe, np. analizator FRA (Frequency Response Analyzer), przetwarza sygnał uzyskany przy różnych częstotliwościach na widmo impedancyjne. Dane uzyskane podczas pomiarów spektroskopii impedancyjnej mogą być przedstawione w formie diagramu Bodego lub Nyquista. Diagram Bodego przedstawia zależność parametrów impedancji w funkcji częstotliwości, najczęściej jest to wykres Z = f(). Z kolei diagram Nyquista jest to wykres zależności Z części urojonej impedancji od Z części rzeczywistej impedancji dla różnych wartości częstotliwości kątowej. Diagram Nyquista stanowi najczęściej półokrąg rozpoczynający się od wartości R E, która jest równa oporności elektrolitu, a kończący się przy wartości R E + R A, gdzie R A jest opornością aktywacyjną, czyli oporem polaryzacyjnym. Najwyżej położony punkt półokręgu odpowiada prędkości kątowej = 1/C D R A, skąd można obliczyć wartość C D. Z wykresu Bodego można wyznaczyć wartość pojemności warstwy, natomiast nie można określić oporu elektrolitu, ponieważ impedancja powłoki jest zazwyczaj wyższa od oporu elektrolitu. Z krzywych otrzymanych w wyniku pomiarów techniką impedancyjną można ponadto wyznaczyć współczynniki przejścia dla reakcji elektronowej, etapowość procesu, współczynnik szybkości reakcji, a także stwierdzić, czy przebieg procesu jest zdeterminowany szybkością reakcji przejścia, czy prędkością dyfuzji substancji aktywnej z roztworu. Rys. 3. przedstawia diagram Nyquista i odpowiadający mu diagram Bodego dla warstwy cynkowej nanoszonej ogniowo na stali konstrukcyjnej w obojętnym roztworze Na 2. Dobierając odpowiedni obwód zastępczy, można w graficzny sposób wyrazić procesy fizyczne i chemiczne mierzone techniką EIS. Obwód zastępczy dla procesów zachodzących na powierzchni cynku na styku z obojętnym elektrolitem przedstawiono na rys. 4. R S Elektrolit Q 2 R 2 Rys. 4. Obwód zastępczy modelujący układ powłoka cynkowa obojętny elektrolit LOKALNE TECHNIKI POLARYZACYJNE Technika lokalnego mikroogniwa (EMT Electrochemical Microcell Technique) służy do badania zachowań korozyjnych w mikroobszarach [9]. Cały pomiar elektrochemiczny odbywa się w cienkiej kapilarze o średnicy od kilku mikrometrów do 1 milimetra. Średnica kapilary dobierana jest w zależności od powierzchni mikroobszaru, jaki ma być poddany badaniu. Elektrodą badaną staje się wtedy powierzchnia pod kapilarą np. wydzielenie, miejsce występowania defektu strukturalnego lub jedna z faz badanego stopu. Mikrokapilara umieszczona jest w naczynku elektrochemicznym, gdzie znajduje się przeciwelektroda, np. drucik platynowy, oraz elektroda odniesienia, np. drut srebrny pokryty chlorkiem srebra. Naczynko zamocowane jest w uchwycie w pozycji obiektywu mikroskopu optycznego, co pozwala precyzyjnie wybrać miejsce pomiaru. Całość umieszczona jest w klatce Faradaya ekranującej przed wpływem zewnętrznych pól elektromagnetycznych mogących zaburzać pomiar ze względu na niewielkie wartości prądowe rejestrowane przez potencjostat. Fot. 4 prezentuje naczynko elektrochemiczne stosowane w metodzie EMT. Rys. 5 przedstawia krzywe polaryzacyjne uzyskane techniką lokalnego mikroogniwa uzyskane w 0,1 M roztworze chlorku sodu na stopie AlMg, wykonane w miejscu wydzielenia oraz na matrycy stopu. Q 1 R 1 ZnO/ Zn(OH) 2 Zn O 1+x Zn 2+ ad Zn + ad Zn 42

4 LABORATORIUM PRZEMYSŁOWE LABORATORIUM 3-4/2015 Fot. 4. Układ pomiarowy do lokalnych pomiarów korozyjnych Rys. 5. Krzywe polaryzacyjne obrazujące korozyjne zachowanie wtrącenia oraz stopu Al-Mg Rys. 6. Sygnały w widmie XPS warstwy powierzchniowej pochodzące od różnych form krzemu powierzchniowej sięga od 0,4 do 5 nm [4]. W celu zbadania głębszych warstw stosuje się trawienie, czyli usuwanie kolejnych monowarstw, jonami argonu. Kolejną metodą spektroskopową badania powierzchniowych warstw korozyjnych jest metoda spektroskopii w podczerwieni z transformacją fourierowską (Fourier Transform Infra Red Spectroscopy) w połączeniu z techniką całkowitego osłabionego odbicia (ATR Attenuated Total Reflectance). Teoretyczną podstawą spektroskopii w podczerwieni jest założenie, że energia cząsteczki jest w pewnym jej stanie stacjonarnym sumą energii elektronowej, oscylacyjnej i rotacyjnej. Ponieważ energia przejść elektronowych jest dużo wyższa od różnicy energii stanów oscylacyjnych, a ta z kolei znacznie przewyższa energie przejść rotacyjnych, położenie widma cząsteczki uzyskanego TECHNIKI SPEKTROSKOPOWE Jedną z metod badania składu warstw korozyjnych jest spektroskopia fotoelektronów, zwana XPS (X-ray Photoelectron Spectroscopy) lub ESCA (Electron Spectroscopy for Chemical Analysis). Mechanizm leżący u podstaw tej metody polega na wybiciu przez foton promieniowania rentgenowskiego fotoelektronu z powłok leżących najbliżej jądra atomu (powłok K i L). Energie wiązania elektronów są zależne od rodzaju atomu, a także od sposobu związania danego atomu i jego stanu walencyjnego. Oddziaływanie atomów innych pierwiastków powoduje przesunięcia poziomów energetycznych nawet na najbardziej wewnętrznych powłokach atomowych, a tym samym przesunięcia położenia pasm w widmie XPS o wartości rzędu 1 ev, zwane przesunięciami chemicznymi. Przesunięcia chemiczne pozwalają na określenie, z jakimi atomami związany jest atom danego pierwiastka lub jaki jest jego stan walencyjny. Rejestruje się widmo w pasmach charakterystycznych dla konkretnego pierwiastka. Widmo XPS może służyć także do analizy ilościowej dzięki temu, że powierzchnia pod konturem pasma jest proporcjonalna do zawartości danego składnika. Dokładne badania wymagają kalibracji, ale nawet bez tego można z grubsza określić zawartość danych form pierwiastka w warstwie powierzchniowej. Rys. 6 prezentuje widmo XPS uzyskane w paśmie Si2p dla warstwy powierzchniowej powstałej na krzemie po trawieniu w roztworze metanol-licl. Analiza ciał stałych metodą spektroskopii fotoelektronów ogranicza się do cienkiej warstwy powierzchniowej, gdyż elektrony wybijane z atomów są przechwytywane w głębi fazy stałej i nie mogą wydostać się na zewnątrz. Głębokość badanej warstwy reklama 43

5 Technika FTIR- ATR wykorzystuje właściwość całkowitego wewnętrznego odbicia wynikającą z fali zanikającej w podczerwieni jest określone przede wszystkim różnicą energii stanów elektronowych. Stosując promieniowanie o energii niższej od energii przejść elektronowych, a taką energię mają fotony promieniowania podczerwonego, otrzymuje się widma składające się wyłącznie z pasm oscylacyjno-rotacyjnych. Widma oscylacyjne są charakterystyczne dla różnych grup funkcyjnych, stąd szerokie zastosowanie spektroskopii w podczerwieni do identyfikacji substancji lub ich fragmentów strukturalnych. Technika FTIR-ATR wykorzystuje właściwość całkowitego wewnętrznego odbicia wynikającą z fali zanikającej. Wiązka światła podczerwonego jest przepuszczana przez kryształ ATR w taki sposób, że odbija się od powierzchni wewnętrznej będącej w kontakcie z badaną próbką. To odbicie tworzy falę zanikającą, która rozciąga się aż do próbki. Głębokość penetracji próbki wynosi zwykle od 0,5 do 2 mikrometrów, a dokładna wartość jest określona przez długość fali światła, kąt padania oraz współczynniki załamania światła dla kryształu ATR i badanego medium. Rys. 7. Schemat układu pomiarowego techniką FTIR-ATR Wiązka jest następnie odbierana przez detektor wychodzący z kryształu. Rys. 7 przedstawia schemat pomiaru próbki stałej pokrytej warstwą za pomocą spektroskopii w podczerwieni z użyciem techniki całkowitego osłabionego odbicia. Rys. 8 przedstawia porównanie widm FTIR-ATR powłoki organicznej naniesionej na podłożu metalicznym z powłokami na podłożu skorodowanym, powłokami starzonymi oraz powłokami nałożonymi na wstępnie skorodowane podłoże, a następnie poddanymi procesowi starzenia w komorze klimatycznej. Z porównania widm można zaobserwować, że nawet dla powłok, które w stanie wyjściowym zaaplikowane na oczyszczonym metalu, nie wykazują aktywności w podczerwieni, pojawia się szerokie pasmo w zakresie liczb falowych cm -1 oraz pojedyncze piki w okolicy 00 cm -1. Związane jest to z pojawianiem się na powierzchni metalu produktów korozji żelaza Fe 2 O 3 oraz FeOOH []. Im mocniejszy sygnał od grupy OH, tym grubsza warstwa produktów korozji na powierzchni. PODSUMOWANIE W artykule przedstawiono wybrane nowoczesne techniki badań korozyjnych, wykorzystywane we współczesnej nauce, w szczególności stosowane w Katedrze Chemii i Korozji Metali WO AGH. Jest to niewielka część ogólnie dostępnych technik, ponieważ opisanie wszystkich metod jest materiałem na obszerną książkę. Wciąż powstają nowe techniki pozwalające w jeszcze doskonalszy sposób określać odporność korozyjną metali i stopów w środowisku, w którym materiały te są eksploatowane. Obecnie dostępne metody badań pozwalają nie tylko na badanie skutków korozji, lecz także na zapobieganie jej, a nawet dają możliwość przewidywania, jakie materiały w danym środowisku będą odporne. Wszystkie zdjęcia, wykresy i rysunki zaprezentowane w niniejszym artykule powstały w toku prac badawczych prowadzonych w Katedrze Chemii i Korozji Metali na Wydziale Odlewnictwa Akademii Górniczo-Hutniczej. Rys. 8. Porównanie widm FTIR-ATR powłoki organicznej naniesionej na powierzchnię oczyszczoną, poddanej procesowi starzenia, naniesionej na powierzchnię skorodowaną, a następnie starzonej 44

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/

Bardziej szczegółowo

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej

Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej 1 2 NR 147 Julian Kubisztal Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej Wydawnictwo Uniwersytetu

Bardziej szczegółowo

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych

Bardziej szczegółowo

Podstawy elektrochemii

Podstawy elektrochemii Podstawy elektrochemii Elektrochemia bada procesy zachodzące na granicy elektrolit - elektroda Elektrony można wyciągnąć z elektrody bądź budując celkę elektrochemiczną, bądź dodając akceptor (np. kwas).

Bardziej szczegółowo

Metody badań składu chemicznego

Metody badań składu chemicznego Wydział Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Metody badań składu chemicznego Ćwiczenie : Elektrochemiczna analiza śladów (woltamperometria) (Sprawozdanie drukować dwustronnie

Bardziej szczegółowo

Katedra Inżynierii Materiałowej

Katedra Inżynierii Materiałowej Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał

Bardziej szczegółowo

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych Honorata Kazimierczak Promotor: Dr hab. Piotr Ozga prof. PAN Warstwy ochronne z cynku najtańsze

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI Analiza ciała stałego ANALIZA POWIERZCHNI ANALIZA CAŁEJ OBJTOCI CIAŁO STAŁE ANALIZA POWIERZCHNI METODY NISZCZCE METODY NIENISZCZCE Metody niszczce: - przeprowadzenie do roztworu (rozpuszczanie, roztwarzanie

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Akademia Sztuk Pięknych w Warszawie, Wydział Konserwacji i Restauracji Dzieł Sztuki, Zakład Badań Specjalistycznych i Technik Dokumentacyjnych

Akademia Sztuk Pięknych w Warszawie, Wydział Konserwacji i Restauracji Dzieł Sztuki, Zakład Badań Specjalistycznych i Technik Dokumentacyjnych SPRAWOZDANIE Z REALIZACJI pierwszego etapu UMOWY o DZIEŁO p.t.: Wykonanie szlifów i analiza produktów korozji próbek metali konstrukcyjnych parowozów metodami mikro-chemicznymi i laserowej spektrometrii

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO Instytut Metalurgii i Inżynierii Materiałowej im. Aleksandra Krupkowskiego

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH

LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH INSTYTUT INŻYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH ĆWICZENIE NR 6 WYZNACZANIE KRZYWYCH POLARYZACJI KATODOWEJ I ANODOWEJ

Bardziej szczegółowo

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Przedmiot: Inżynieria Powierzchni / Powłoki Ochronne / Powłoki Metaliczne i Kompozytowe

Bardziej szczegółowo

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

(zwane również sensorami)

(zwane również sensorami) Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Wrocław dn. 18 listopada 2005 roku

Wrocław dn. 18 listopada 2005 roku Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 18 listopada 2005 roku Temat lekcji: Zjawisko korozji elektrochemicznej. Cel ogólny lekcji: Wprowadzenie

Bardziej szczegółowo

Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok

Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok Wydział Fizyki, 2009 r. I Cel ćwiczenia Celem ćwiczenia jest: Zapoznanie się

Bardziej szczegółowo

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz

Bardziej szczegółowo

WFiIS. Wstęp teoretyczny:

WFiIS. Wstęp teoretyczny: WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Podstawy elektrochemii i korozji. Ćwiczenie 6

Podstawy elektrochemii i korozji. Ćwiczenie 6 Podstawy elektrochemii i korozji Ćwiczenie 6 Elektrochemiczna spektroskopia impedancyjna (EIS) Wyznaczanie parametrów impedancji z krzywych Nyquist a Impedancja jest to wielkość charakteryzująca zależność

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

E dec. Obwód zastępczy. Napięcie rozkładowe

E dec. Obwód zastępczy. Napięcie rozkładowe Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r.

WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. B. Stypuła, J. Banaś M. Starowicz WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. ANODOWE ZACHOWANIE SIĘ

Bardziej szczegółowo

Spektroskopia elektronów Augera AES

Spektroskopia elektronów Augera AES Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA

ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera w Ustroniu ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA Magdalena Puda Promotor: Dr inŝ. Jacek Grzegorz Chęcmanowski Cel pracy

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Cel ćwiczenia: Celem ćwiczenia jest wykorzystanie promieniowania

Bardziej szczegółowo

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

O NIEKTÓRYCH SKUTKACH ODDZIAŁYWANIA PROMIENIOWANIA LASERA RUBINOWEGO Z UKŁADEM CIENKA WARSTWA WĘGLIKÓW METALI NA KAPILARNO-POROWATYM PODŁOŻU

O NIEKTÓRYCH SKUTKACH ODDZIAŁYWANIA PROMIENIOWANIA LASERA RUBINOWEGO Z UKŁADEM CIENKA WARSTWA WĘGLIKÓW METALI NA KAPILARNO-POROWATYM PODŁOŻU FIZYA BUDWLI W TERII I PRATYCE TM IV, 29 Sekcja Fizyki Budowli ILiW PAN NIETÓRYCH SUTACH DDZIAŁYWANIA PRMIENIWANIA LASERA RUBINWEG Z UŁADEM CIENA WARSTWA WĘGLIÓW METALI NA APILARN-PRWATYM PDŁŻU Piotr LEMM

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Fotowoltaika i sensory w proekologicznym rozwoju Małopolski Photovoltaic and Sensors in Environmental Development of Malopolska Region ZWIĘKSZANIE WYDAJNOŚCI SYSTEMÓW FOTOWOLTAICZNYCH Plan prezentacji

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Ćwiczenie 8 Analityczne wykorzystywanie zmiennoprądowych i pulsowych technik woltamperometrycznych.

Ćwiczenie 8 Analityczne wykorzystywanie zmiennoprądowych i pulsowych technik woltamperometrycznych. Ćwiczenie 8 Analityczne wykorzystywanie zmiennoprądowych i pulsowych technik woltamperometrycznych. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z teorią i możliwościami analitycznego wykorzystywania

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Kamil Wróbel Pracownia Elektrochemicznych Źródeł Energii Kierownik pracy: prof. dr hab. A. Czerwiński Opiekun pracy: dr M. Chotkowski

Bardziej szczegółowo

1 Badania strukturalne materiału przeciąganego

1 Badania strukturalne materiału przeciąganego Zbigniew Rudnicki Janina Daca Włodzimierz Figiel 1 Badania strukturalne materiału przeciąganego Streszczenie Przy badaniach mechanizmu zużycia oczek ciągadeł przyjęto założenie, że przeciągany materiał

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 BADANIA ODPORNOŚCI NA KOROZJĘ ELEKTROCHEMICZNĄ SYSTEMÓW POWŁOKOWYCH 1. WSTĘP TEORETYCZNY Odporność na korozję

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Nowoczesne metody analizy pierwiastków

Nowoczesne metody analizy pierwiastków Nowoczesne metody analizy pierwiastków Techniki analityczne Chromatograficzne Spektroskopowe Chromatografia jonowa Emisyjne Absorpcyjne Fluoroscencyjne Spektroskopia mas FAES ICP-AES AAS EDAX ICP-MS Prezentowane

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz.13

Dobór materiałów konstrukcyjnych cz.13 Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

Elektrochemia - szereg elektrochemiczny metali. Zadania

Elektrochemia - szereg elektrochemiczny metali. Zadania Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA

Bardziej szczegółowo

Techniki próżniowe (ex situ)

Techniki próżniowe (ex situ) Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo

Bardziej szczegółowo

Rozpraszanie nieelastyczne

Rozpraszanie nieelastyczne Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony

Bardziej szczegółowo

Polarografia jest metodą elektroanalityczną, w której bada się zależność natężenia prądu płynącego przez badany roztwór w funkcji przyłożonego do

Polarografia jest metodą elektroanalityczną, w której bada się zależność natężenia prądu płynącego przez badany roztwór w funkcji przyłożonego do Polarografia Polarografia jest metodą elektroanalityczną, w której bada się zależność natężenia prądu płynącego przez badany roztwór w funkcji przyłożonego do elektrod napięcia lub w funkcji potencjału

Bardziej szczegółowo

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego. Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Spektrometr XRF THICK 800A

Spektrometr XRF THICK 800A Spektrometr XRF THICK 800A DO POMIARU GRUBOŚCI POWŁOK GALWANIZNYCH THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zaprojektowany do pomiaru grubości warstw

Bardziej szczegółowo